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Outline

* |dentify spatially variable genes
* Cell type deconvolution

* Imputation
* Impute missing genes for image-based data
* Increase the resolution of sequencing-based data



Moran’s | score in Squidpy

Moran’s | score 1=-1.00 1=0.84
 Measurement of spatial autocorrelation -
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where |=-0.05 1=0.51

e Construct p-value for each gene

* Under the null of no spatial autocorrelation (for specific definitions see Wikipedia)
1 NSy — 535
E(I) = R — (B())*

e IV is the number of spatial units indexed by ¢ and j;
e 1 is the variable of interest;

e is the mean of z;

ew;; are the elements of a matrix of spatial weights with zeroes on the diagonal
(i.e., Wi = O),

N N
eand W is the sum of all wy; (ie. W = ) wyj).
i=1 j=1

v—1 U moow_pnw e

* Convert into z-scores and compute p-value




SpatiaIDE (Svensson et. al. Nature Methods 2018)

 Main idea: for each gene assume a Gaussian process model

P(y|u,02,8,%)=N(y|u-1,02 (£+8-1))

« Common mean across all spots / cells
* Covariance depend on spatial locations
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e Construct p-values: likelihood ratio test testing whether X = 0

 Model selection assuming periodic covariance and linear covariance

y = f((z1,22)) + 9
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SpatiaIDE (Svensson et. al. Nature Methods 2018)

Expression histology
* Perform gene clustering using a hierarchical mixture model on features

C Histological pattern expression (hidden)

P(Y.u,2,62,3) = P(Y |1, Z,62)- P(u | X)- P(2)

Pattern-to-gene
(ZS J*) assigment (hidden)/
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SpatialDE2 (Kats et. al. BioRXiv, 2021)

e Use Poisson model for the data
e Superior computational speed

* Core steps:
* Tissue region segmentation using HMRF
* Assume that gene expression counts follow Poisson distribution within each hidden state /

cluster
Agc ~ g (71972)

yg'n | Tn = C, Ag ~ Pois (SnAgc)
* Detect spatially variable genes
e~N (pl,01K; + -+ + 0 Ky + 0,1)
y | e ~ Pois (s ® exp(e))

 Use the GLMM score test and implement in GPU (details omitted)
 Need to transform data to Gaussian for gene clustering analyses
* Use variational inference to speed up computation



SpatialDE2 (Kats et. al. BioRXiv, 2021)

A (deconvolution) B spatial segmentation C modeling of sub-region heterogeneity
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SPARK (Sun et. al., Nature Methods 2020)

Gaussian/periodic kernels (K)

T
)

Cauchy combination rule

s P value
Spatial expression pattern e >
g P P Generalized linear spatial model d 10 t@an(0.5
- ! o = e = e e e e = = S : Tocn= ; w;tan(0.5 - )
& &> N S Correlation =1
. : Fe 1.0 A
> w y;~ Poi (N, ,) | I
. : H.:t,=0

Final P value

b= (b,,....b,)"~ MVN (0,,K)

(
I
= . log(2,) = xB + b, +¢,
I
. €= (e,..8,) ~ MVN (0,7,1)

Relative expression

K R

0 025 050 0.75 1.00

Hierarchical Poisson GP model
e (Can adjust for confounding covariates such as cell types
* Test for each specific kernel and combine p-values across kernels
* Testing is challenging -> use a penalized quasi-likelihood algorithm

As other GP models, computational cost is high
The authors have later developed SPARK-X (Zhu et. al., Genome Biology 2021) to speed up

* based on similarity test between gene covariance matrix and spatial similarity



Cell type deconvolution for bulk RNA-seq

cell-type specific

i f dataset
bulk average gene expression proportion error reterence datase
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* Main challenges (Xie and Wang, ArXiv, 2022):
* Cell-type specific gene expressions from reference datasets may not be reliable
* Variability of gene expression across individuals
* Platform specific biases between bulk and single-cell RNA sequencing data
* Missing cell types in the reference data
* Genes are not independent across each other
* How does the uncertainty in estimated cell types affect downstream analyses?



MuSiC (Wang et. al., Nature Comm, 2019)

[Multi-subject scRNA-seq \ ( Cell type-specific gene expression reference from scRNA-seq ) /Bulk tissue deconvolution )
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MuSiC (Wang et. al., Nature Comm, 2019)

* Key steps
* Normalize reference scRNA-seq data
* Normalize by the library size but no transformations (why?)
 Alinear regression model:

K
Yjg =Cj - (ijk Sk 6, + €jg>
k=1

* Two constraints:
(C1) Non-negativity: p];-’ > 0forallj, k; (C2) Sum-to-one: Zle p’f = 1forallj
. SRHJ-’“Q: absolute gene expression profiles for each cell type

* scRNA-seq only provides relative abundance Hfg

e Assume Sy, (cell size) is the same across all cell types
e Solve the model by Weighted non-negative least squares
* Intuitively, marker genes should have higher weights
e That intuition is wrong by Gauss-Markov theorem (Xie and Wang, ArXiv, 2022)
* Give higher weights to genes that can be estimated and measured more accurately
* Genes with less variability across samples for cell-type specific expressions
* Genes has less technical noise



MuSiC (Wang et. al., Nature Comm, 2019)

* Key steps
* Normalize reference scRNA-seq data
 Alinear regression model:

K
Yjg =Cj - (ijk Sk 0, + Ejg>
k=1

e Solve the model by Weighted non-negative least squares
* Intuitively, marker genes should have higher weights
e That intuition is wrong by Gauss-Markov theorem (Xie and Wang, ArXiv, 2022)
* Give higher weights to genes that can be estimated and measured more accurately
* Genes with less variability across samples for cell-type specific expressions
* Genes has less technical noise
* |teratively reweighting in MuSiC
* Estimate the variance of each gene given the current estimated p
* Inverse variance weighting to update the estimate of p

* Recursive tree-guided deconvolution
* Deconvolute major cell types first



RCTD (Cable et. al, Nature Biotech 2022)

0.2

Cell type deconvolution for spatial transcriptomics
* Consider gene-specific biases across platforms
 Does not smooth across spatial locations

Need to decompose many spots simultaneously

0.1+

Density of genes

log ratio of gene expression by platform

*  Model Yii|Ai; ~ Poisson(V;\; ;)
log (A\ij) = a; +log (Zle ﬂi,k,uk,j) +v; +€ij

* fi: cell type proportion per spot
* Y gene-specific biases, prior yj~N(0, 013)

* Model fitting
* Estimate cell-type specific gene expressions from the reference

* Select marker genes for each cell type

* Estimate y; by aggregating across spots
Identification issues if y; are arbitrarily different and only marker genes are selected?

(Wang and Xie, Arxiv, 2022)



Cell2location (Kleshchevnikov et. al., Nature Biotech 2022)

* Goal: get spatial distribution of cells types = cell type deconvolution
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* Model tor a spatial spot
ds,g ~ NB (5,9, Qe g)
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Cell2location (Kleshchevnikov et. al., Nature Biotech 2022)

( )

Hs,g = my ' E :ws,f 9fg T Seg ' Ys
~~ f ~~ ~
technology sensitivity N P additive shift per-location sensitivity
\ cell type contributions

* Hierarchical model on the proportions wg  assuming factor models

wg,f ~ Gamma(uy (0%, v")

PEr =) zer Tng

* Priors on the factors add some regularization?
25 ~ Gamma(Bs/R,1/(Ns/Bs)). N, ~ Gamma(N - o™, v") B, ~ Gamma(B, 1),
T, ¢ ~ Gamma(K,/R, K;) K, ~ Gamma(A/B,1)

e Similar priors on other parameters

e Use Variational Bayes to solve the model
* Seems to be challenging to solve



Cell2location (Kleshchevnikov et. al., Nature Biotech 2022)
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Tangram (Biancalani et. al., Nature Methods 2021)

* Predict the spatial locations of each cell in sc/snRNA-seq data by leveraging spatial transcriptomics

Spatial transcriptomics can be either sequencing-based or image-based

Goals:
* Impute missing gene expressions in image-based spatial transcriptomics
* Denoising and cell type deconvolution for sequencing-based spatial transcriptomics data

* Map sc/snRNA-seq data to spatial locations

* Predict chromatin accessibility for spatial transcriptomics data
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Tangram (Biancalani et. al., Nature Methods 2021)

* Cell mapping

* Input: spatial voxel by gene matrix G, cell density vector d across voxels d, Cell by gene
expression matrix S

e Output: cell by voxel mapping matrix M
* Loss function

Ngenes Neells
d (M) = KL (ﬁrl, Ei) — % COSgim ((MTS)*,k,G*,k) m; = Z Mz'j/ncells
7
Nyozxels T _ GMU
— D COSgim ((MT8)j,Gjn) s M;; = softmax(M);; = —
j Nwyozxels eMl

l

* Mapping only a subset of genes (mapping with a filter)
* Include a real-values filtering vector f in training f; = o(f ;)

7 A
d (M, f ) — KL (mf,d> — > coSgim (MTST), 1, Gii)
k

Nyoxels Ncells y Mwoxels
— > cossin (MT87)4,Gj) = Ay Y, Mijlog (M)
J 2,7

Ncells Ticells

+ab5( Z f7 - ntarget_cells) + Z (fl - ff)



Tangram (Biancalani et. al., Nature Methods 2021)

* Cell mapping

* For image-based spatial transcriptomics, n_(target_cells)=n_voxel

* Transfer cell type annotations in sc/snRNA-seq to spatial data based on M
* For low resolution spatial transciptomics, assign a probability (cell type proportions)

* For single-cell resolution data, assign to the cell type with maximum probability

On MERFISH test genes
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IStar (zhang et. al., Nature Biotech 2024)

* Making histological image as a guidance of the cell type at a higher resolution to increase the resolution of the
sequencing-based data

a
iStar (Inferring Super-resolution Tissue Architecture)

- -

Histology image Hierarchical histology tiles Hierarchical histology features Super-resolution gene expressions Tissue annotation
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IStar (zhang et. al., Nature Biotech 2024)

* Key steps:
* Extract histological features
* Partition into image tiles hypercritically with different resolution:
original pixel, 16*16 pixel blocks, 256 * 256 pixel blocks

* Use hierarchical vision transformers (HViTs) to extract features from the image tiles
* Each 16 * 16 block and 25 * 25 block receives a low-dimensional embedding (dimension C; and ()
* Pretrain the HViTs model on public histological image

* Final output: ,

histology feature image H = [hmn]%:’f[n:l of size M’ x N’ with C; + C, + 3 channels

Co Ny = (BN (BN (MY )
16" 16 32 32 64 64 128" 128

* Prediction super-resolution gene expressions

XZZE Yrs — Z gr, (hmn)

k=1 s=1 (m,n)eMs

* No use of scRNA-seq data at all for deconvolution
* |f cell segmentation is provided, can obtain single-cell level gene expressions
* Only predict the top 1000 HVGs

* Provide cell type annotations of the regions



IStar (zhang et. al., Nature Biotech 2024)

d Cell-level ERBB2 (ground truth) Cell-level ERBB2 (prediction by iStar)
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