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Outline

• Identify spatially variable genes

• Cell type deconvolution

• Imputation
• Impute missing genes for image-based data
• Increase the resolution of sequencing-based data



Moran’s I score in Squidpy
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Moran’s I score
• Measurement of spatial autocorrelation

• Construct p-value for each gene
• Under the null of no spatial autocorrelation (for specific definitions see Wikipedia)

• Convert into z-scores and compute p-value



SpatialDE (Svensson et. al. Nature Methods 2018)
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• Main idea: for each gene assume a Gaussian process model

• Common mean across all spots / cells
• Covariance depend on spatial locations

• Construct p-values: likelihood ratio test testing whether Σ = 0

• Model selection assuming periodic covariance and linear covariance



SpatialDE (Svensson et. al. Nature Methods 2018)

5

Expression histology
• Perform gene clustering using a hierarchical mixture model on features



SpatialDE2 (Kats et. al. BioRXiv, 2021)
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• Use Poisson model for the data
• Superior computational speed

•  Core steps:
• Tissue region segmentation using HMRF

• Assume that gene expression counts follow Poisson distribution within each hidden state / 
cluster

• Detect spatially variable genes

• Use the GLMM score test and implement in GPU (details omitted)
• Need to transform data to Gaussian for gene clustering analyses

• Use variational inference to speed up computation



SpatialDE2 (Kats et. al. BioRXiv, 2021)
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SPARK (Sun et. al., Nature Methods 2020)
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• Hierarchical Poisson GP model
• Can adjust for confounding covariates such as cell types
• Test for each specific kernel and combine p-values across kernels
• Testing is challenging -> use a penalized quasi-likelihood algorithm

• As other GP models, computational cost is high
• The authors have later developed SPARK-X (Zhu et. al., Genome Biology 2021) to speed up

• based on similarity test between gene covariance matrix and spatial similarity



Cell type deconvolution for bulk RNA-seq
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• Main challenges (Xie and Wang, ArXiv, 2022):
• Cell-type specific gene expressions from reference datasets may not be reliable

• Variability of gene expression across individuals
• Platform specific biases between bulk and single-cell RNA sequencing data

• Missing cell types in the reference data
• Genes are not independent across each other 
• How does the uncertainty in estimated cell types affect downstream analyses?
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MuSiC (Wang et. al., Nature Comm, 2019)
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MuSiC (Wang et. al., Nature Comm, 2019)
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• Key steps
• Normalize reference scRNA-seq data

• Normalize by the library size but no transformations (why?)
• A linear regression model:

• Two constraints:

• 𝑆!𝜃"#! : absolute gene expression profiles for each cell type
• scRNA-seq only provides relative abundance 𝜃"#!

• Assume 𝑆! (cell size) is the same across all cell types
• Solve the model by Weighted non-negative least squares

• Intuitively, marker genes should have higher weights 
• That intuition is wrong by Gauss-Markov theorem (Xie and Wang, ArXiv, 2022)

• Give higher weights to genes that can be estimated and measured more accurately
• Genes with less variability across samples for cell-type specific expressions
• Genes has less technical noise



MuSiC (Wang et. al., Nature Comm, 2019)
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• Key steps
• Normalize reference scRNA-seq data
• A linear regression model:

• Solve the model by Weighted non-negative least squares
• Intuitively, marker genes should have higher weights 

• That intuition is wrong by Gauss-Markov theorem (Xie and Wang, ArXiv, 2022)
• Give higher weights to genes that can be estimated and measured more accurately

• Genes with less variability across samples for cell-type specific expressions
• Genes has less technical noise

• Iteratively reweighting in MuSiC
• Estimate the variance of each gene given the current estimated 𝑝"!
• Inverse variance weighting to update the estimate of 𝑝"!

• Recursive tree-guided deconvolution
• Deconvolute major cell types first



RCTD (Cable et. al, Nature Biotech 2022)
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• Cell type deconvolution for spatial transcriptomics
• Consider gene-specific biases across platforms
• Does not smooth across spatial locations
• Need to decompose many spots simultaneously

• Model

• 𝛽$,!: cell type proportion per spot 
• 𝛾": gene-specific biases, prior 𝛾"~𝑁(0, 𝜎&')

• Model fitting
• Estimate cell-type specific gene expressions from the reference
• Select marker genes for each cell type
• Estimate 𝛾" by aggregating across spots

• Identification issues if 𝛾" are arbitrarily different and only marker genes are selected?
(Wang and Xie, Arxiv, 2022)



Cell2location (Kleshchevnikov et. al., Nature Biotech 2022)

• Goal: get spatial distribution of cells types à cell type deconvolution

• Model for a spatial spot

Additive shift account for 
contaminating RNA



Cell2location (Kleshchevnikov et. al., Nature Biotech 2022)

• Hierarchical model on the proportions 𝑤(,) assuming factor models

• Priors on the factors add some regularization?

• Similar priors on other parameters

• Use Variational Bayes to solve the model
• Seems to be challenging to solve



Cell2location (Kleshchevnikov et. al., Nature Biotech 2022)



Tangram (Biancalani et. al., Nature Methods 2021)

• Predict the spatial locations of each cell in sc/snRNA-seq data by leveraging spatial transcriptomics
• Spatial transcriptomics can be either sequencing-based or image-based
• Goals:

• Impute missing gene expressions in image-based spatial transcriptomics
• Denoising and cell type deconvolution for sequencing-based spatial transcriptomics data
• Map sc/snRNA-seq data to spatial locations
• Predict chromatin accessibility for spatial transcriptomics data



Tangram (Biancalani et. al., Nature Methods 2021)

• Cell mapping
• Input: spatial voxel by gene matrix 𝐺, cell density vector d across voxels 𝑑, Cell by gene 

expression matrix 𝑆
• Output: cell by voxel mapping matrix 𝑀
• Loss function

• Mapping only a subset of genes (mapping with a filter)
• Include a real-values filtering vector 3𝑓 in training



Tangram (Biancalani et. al., Nature Methods 2021)

• Cell mapping
• For image-based spatial transcriptomics, 𝑛_(target_cells)=𝑛_voxel

• Transfer cell type annotations in sc/snRNA-seq to spatial data based on 𝑀
• For low resolution spatial transciptomics, assign a probability (cell type proportions)
• For single-cell resolution data, assign to the cell type with maximum probability



iStar (Zhang et. al., Nature Biotech 2024)

• Making histological image as a guidance of the cell type at a higher resolution to increase the resolution of the 
sequencing-based data



iStar (Zhang et. al., Nature Biotech 2024)

• Key steps:
• Extract histological features

• Partition into image tiles hypercritically with different resolution: 
original pixel, 16*16 pixel blocks, 256 * 256 pixel blocks 

• Use hierarchical vision transformers (HViTs) to extract features from the image tiles
• Each 16 * 16 block and 25 * 25 block receives a low-dimensional embedding (dimension 𝐶! and 𝐶")
• Pretrain the HViTs model on public histological image

• Final output:
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• Prediction super-resolution gene expressions

• No use of scRNA-seq data at all for deconvolution
• If cell segmentation is provided, can obtain single-cell level gene expressions
• Only predict the top 1000 HVGs

• Provide cell type annotations of the regions



iStar (Zhang et. al., Nature Biotech 2024)
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