Causal Inference Methods and Case Studies

STAT24630
Jingshu Wang

Lecture 10

Topic: Non-compliance in randomized experiments, instrumental variables

- Non-compliance in randomized experiment
- Intention-to-treat effect
- Principal stratification
- The monotonicity and exclusion restriction assumptions
- CATE estimand and the moment-based estimator
- Connection with two-stage least square estimator
- Weak instrument
- Textbook Chapters: Imbens and Rubin Chapters 23 \& 24, Peng Chapter 21

Ideal randomized experiment

- We have for now only considered an ideal randomized experiment
- No loss to follow-up
- Full adherence to the assigned treatment over the duration of the study ex. most severely ill individuals in the control group tend to seek a heart outside of the study.
- No measurement errors
ex. The PCR tests of COVID-19 may introduce false signals (depending on virus loading) when evaluating the causal effect of vaccine
- A single version of treatment: different dosage of a drug
- Double-blind assignment
in real life, both patients and doctors are aware of the received treatment

Non-compliance in randomized experiments

- In practice, randomized experiments are often not ideal
- Often, for ethical and logistical reasons, we cannot force all experimental units to follow the randomized treatment assignment
- some in the treatment group refuse to take the treatment
- some in the control group manage to receive the treatment
- Intention-to-Treat (ITT) analysis: causal effect of treatment assignment (case study 1)
- ITT effect can be estimated without bias
- ITT analysis does not yield the treatment effect
- As-treated analysis (case study 2)
- comparison of the treated and untreated subjects (based on treatment received)
- no benefit of randomization, can suffer from selection bias
- Can we still estimate the treatment effect somehow?

The Sommer-Zeger vitamin A supplement data

- Sommer and Zeger study the effect of vitamin A supplements on infant mortality in Indonesia
- The vitamin supplements were randomly assigned to villages, but some of the individuals in villages assigned to the treatment group failed to receive them.
- None of the individuals assigned to the control group received the supplements
- $N=23,682$ infants
- Outcome: binary variable indicating survival of an infant
- $W_{i}^{\text {obs }} \in\{0,1\}$ whether the infant receives the vitamin supplement or not
- $Z_{i} \in\{0,1\}$ whether the infant is assigned to the treatment group or not
- We ignore the fact that treatment assignment is at the village level (clustered randomized experiment) and consider the experiment as from a completely randomized experiment

The Sommer-Zeger vitamin A supplement data

- In principle, 8 different possible values of the triple ($Z_{i}, W_{i}^{\text {obs }}, Y_{i}^{\mathrm{obs}}$)
- Non-compliance: $Z_{i} \neq W_{i}^{\text {obs }}$

Assignment Z_{i}	Vitamin Supplements $W_{i}^{\text {obs }}$	Survival $Y_{i}^{\text {obs }}$	Number of Units $(N=23,682)$
0	0	0	74
0	0	1	11,514
1	0	0	34
1	0	1	2385
1	1	0	12
1	1	1	9663

Three types of traditional analyses

Method	Estimate	Calculation	Row Comparison
ITT	0.0026	$=\frac{2385+9663}{12+9663+34+2385}-\frac{11514}{74+11514}$	$3,4,5, \& 6$ vs. $1 \& 2$
As-treated	0.0065	$=\frac{9663}{12+9663}-\frac{11514+2385}{74+11514+34+2385}$	$5 \& 6$ vs. $1,2,3, \& 4$
Per-protocol	0.0052	$=\frac{9663}{12+9663}-\frac{11514}{74+11514}$	$5 \& 6$ vs. $1 \& 2$

Assignment Z_{i}	Vitamin Supplements $W_{i}^{\text {obs }}$	Survival $Y_{i}^{\text {obs }}$	Number of Units $(N=23,682)$
0	0	0	
0	0	1	11,514
1	0	0	34
1	0	1	2385
1	1	0	12
1	1	1	9663

Can we provide a better analysis?

Setup of the framework

- Treatment assignment (randomized encouragement): $Z_{i} \in\{0,1\}$
- Potential treatment variables: $\left(W_{i}(0), W_{i}(1)\right)$
- $W_{i}(z)=1$: would receive the treatment if $Z_{i}=z$
- $W_{i}(z)=0$: would not receive the treatment if $Z_{i}=z$
- Observed treatment received: $W_{i}^{\text {obs }}=W_{i}\left(Z_{i}\right)$
- In the non-compliance setting, there are two "treatment": assignment to treatment and receipt of treatment
- Potential outcomes: $Y_{i}(z, w)$ potential outcome if unit is assigned to z and receive w
- Observed outcome: $Y_{i}^{\text {obs }}=Y_{i}\left(Z_{i}, W_{i}\left(Z_{i}\right)\right)$
- We can also write the potential outcomes as $Y_{i}(z)=Y_{i}\left(z, W_{i}(z)\right)$

Underlying assumptions

- No interference assumption for $W_{i}(z)$ and $Y_{i}(z, w)$
- Randomization of the treatment assignment

$$
\left(Y_{i}(0,0), Y_{i}(0,1), Y_{i}(1,0), Y_{i}(1,1), W_{i}(0), W_{i}(1)\right) \perp Z_{i}
$$

- We don't have

$$
\left(Y_{i}(0,0), Y_{i}(0,1), Y_{i}(1,0), Y_{i}(1,1)\right) \perp W_{i}^{\mathrm{obs}}
$$

or

$$
\left(Y_{i}(0,0), Y_{i}(0,1), Y_{i}(1,0), Y_{i}(1,1)\right) \perp W_{i}^{\mathrm{obs}} \mid Z_{i}
$$

We don't know why some units comply and some units don't

- Compliance can not be controlled by randomized experiment

Intention-to-treat (ITT) effects

- ITT effect on the receipt of treatment level

$$
\operatorname{ITT}_{\mathrm{W}, i}=W_{i}(1)-W_{i}(0) \quad \mathrm{ITT}_{\mathrm{W}}=\frac{1}{N} \sum_{i=1}^{N} \operatorname{ITT}_{\mathrm{W}, i}=\frac{1}{N} \sum_{i=1}^{N}\left(W_{i}(1)-W_{i}(0)\right)
$$

- ITT effect on the outcome of primary interest

$$
\begin{gathered}
\operatorname{ITT}_{\mathrm{Y}, i}=Y_{i}\left(1, W_{i}(1)\right)-Y_{i}\left(0, W_{i}(0)\right) \\
\operatorname{ITT}_{\mathrm{Y}}=\frac{1}{N} \sum_{i=1}^{N} \operatorname{ITT}_{\mathrm{Y}, i}=\frac{1}{N} \sum_{i=1}^{N}\left(Y_{i}\left(1, W_{i}(1)\right)-Y_{i}\left(0, W_{i}(0)\right)\right)
\end{gathered}
$$

Statistical analysis of ITT effects

- Statistical analyses of these effects follow exactly the same procedures as before

$$
\begin{aligned}
& \widehat{\mathrm{ITT}_{\mathrm{W}}}=\bar{W}_{1}^{\mathrm{obs}}-\bar{W}_{0}^{\mathrm{obs}} \quad \widehat{\mathbb{V}}(\widehat{\mathrm{ITT}})=\frac{s_{W, 0}^{2}}{N_{0}}+\frac{s_{W, 1}^{2}}{N_{1}} \\
& s_{W, z}^{2}=\sum_{i: W_{i}^{\mathrm{obs}}=z} \frac{\left(W_{i}^{\mathrm{obs}}-\bar{W}_{z}^{\mathrm{obs}}\right)^{2}}{N_{z}-1}=\frac{N_{z}}{N_{z}-1} \bar{W}_{z}^{\mathrm{obs}}\left(1-\bar{W}_{z}^{\mathrm{obs}}\right) \\
& \widehat{\mathrm{ITT}_{\mathrm{Y}}}=\bar{Y}_{1}^{\mathrm{obs}}-\bar{Y}_{0}^{\mathrm{obs}} \quad \widehat{\mathbb{V}}(\widehat{\mathrm{ITT}})=\frac{s_{Y, 1}^{2}}{N_{1}}+\frac{s_{Y, 0}^{2}}{N_{0}}
\end{aligned}
$$

- We can also use regression analyses
- Drawback is that it estimates 'programmatic effectiveness' instead of 'biologic efficacy'

Principal stratification

- Stratify individuals based on their compliance status
- Four principal strata
- Compliers (co) $\left(W_{i}(0), W_{i}(1)\right)=(0,1)$
- Non-compliers (nc) $\begin{cases}\text { Always - takers (at) } & \left(W_{i}(0), W_{i}(1)\right)=(1,1) \\ \text { never - takers (nt) } & \left(W_{i}(0), W_{i}(1)\right)=(0,0) \\ \text { Defiers (df) } & \left(W_{i}(0), W_{i}(1)\right)=(1,0)\end{cases}$

		$W_{i}(1)$	
		0	1
$W_{i}(0)$	0	nt	co
	1	df	at

Principal stratification

- Principal stratification depends on latent states of units!!
- Can not decide which principal strata each unit belong to simply based on the observed data
- one-sided compliance: control group can never receive the treatment, but treatment group may not follow the assignment

		Assignment Z_{i}	
		0	1
Receipt of treatment $W_{i}^{\text {obs }}$	0	$\mathrm{nt} / \mathrm{co}$	nt^{2}
		1	-

ITT effect decomposition

- Denote the proportion of individuals that fall into each strata as $\pi_{c}, \pi_{a}, \pi_{n}, \pi_{d}$
- For one-sided compliance data, $\pi_{a}=\pi_{d}=0$
- Define the average ITT effect for each strata
- For the treatment received $\mathrm{ITT}_{W, c}, \mathrm{ITT}_{W, a}, \mathrm{ITT}_{W, n}, \mathrm{ITT}_{W, d}$

$$
\mathrm{ITT}_{W, c}=1, \mathrm{ITT}_{W, a}=0, \mathrm{ITT}_{W, n}=0, \mathrm{ITT}_{W, d}=-1
$$

- For the primary outcome $\mathrm{ITT}_{c}, \mathrm{ITT}_{a}, \mathrm{ITT}_{n}, \mathrm{ITT}_{d}$
- For the ITT effect on treatment received

$$
\mathrm{ITT}_{W}=\sum_{i=1}^{N} \mathrm{ITT}_{W, i}=\pi_{c} \mathrm{ITT}_{W, c}+\pi_{a} \mathrm{ITT}_{W, a}+\pi_{n} \mathrm{ITT}_{W, n}+\pi_{d} \mathrm{ITT}_{W, d}=\pi_{c}-\pi_{d}
$$

- For the ITT effect on primary outcome

$$
\mathrm{ITT}_{Y}=\sum_{i=1}^{N} \mathrm{ITT}_{Y, i}=\pi_{c} \mathrm{ITT}_{c}+\pi_{a} \mathrm{ITT}_{a}+\pi_{n} \mathrm{ITT}_{n}+\pi_{d} \mathrm{ITT}_{d}
$$

Instrumental variables (IV)

Assumptions for Z_{i} being a valid IV:

- Randomization: $Z_{i} \in\{0,1\}$ are randomized
- Monotonicity: no defiers $\pi_{d}=0$ or $W_{i}(0) \leq W_{i}(1)$ for all i
- Exclusion restriction: instrument affects the outcome only through treatment

$$
Y_{i}(1, w)=Y_{i}(0, w)
$$

- For always takers

$$
\operatorname{ITT}_{Y, i}=Y_{i}\left(1, W_{i}(1)\right)-Y_{i}\left(0, W_{i}(0)\right)=Y_{i}(1,1)-Y_{i}(0,1)=0
$$

so $\mathrm{ITT}_{a}=0$

- For never takers

$$
\mathrm{ITT}_{Y, i}=Y_{i}\left(1, W_{i}(1)\right)-Y_{i}\left(0, W_{i}(0)\right)=Y_{i}(1,0)-Y_{i}(0,0)=0
$$

$$
\text { so } \mathrm{ITT}_{n}=0
$$

- For compliers

$$
\mathrm{ITT}_{Y, i}=Y_{i}\left(1, W_{i}(1)\right)-Y_{i}\left(0, W_{i}(0)\right)=Y_{i}(1,1)-Y_{i}(0,0)
$$

ITT_{C} is the average "biological efficacy" of the treatment on compliers

- Relevance: $\pi_{c}>0$

Instrumental variables

Assumptions of Z_{i} being a valid IV :

- Randomization: $Z_{i} \in\{0,1\}$ are randomized
- Monotonicity: no defiers $\pi_{d}=0$ or $W_{i}(0) \leq W_{i}(1)$ for all i
- Exclusion restriction: instrument affects the outcome only through treatment

$$
Y_{i}(1, w)=Y_{i}(0, w)
$$

- Relevance: $\pi_{c}>0$
- Then $\mathrm{ITT}_{W}=\pi_{c}$ and $\mathrm{ITT}_{Y}=\pi_{c} \mathrm{ITT}_{c}+\pi_{a} \mathrm{ITT}_{a}+\pi_{n} \mathrm{ITT}_{n}+\pi_{d} \mathrm{ITT}_{d}=\pi_{c} \mathrm{ITT}_{c}$
- IV estimand: ITT $_{c}$ Complier average treatment effect (CATE)

$$
\text { CATE }=\operatorname{ITT}_{c}=\frac{\mathrm{ITT}_{Y}}{\mathrm{ITT}_{W}}
$$

- We can identify ITT_{Y} and ITT_{W}, so ITT_{C} is also identifiable
- CATE $=$ ATE unless ATE for noncompliers equals CATE

The monotonicity assumption

- Monotonicity: no defiers $\pi_{d}=0$ or $W_{i}(0) \leq W_{i}(1)$ for all i
- Defiers are individuals who never follow treatment assignment no matter what treatment assignment is
- For one-sided compliance data, monotonicity is always satisfied
- Check the monotonicity assumption in general:
- $\mathrm{ITT}_{W}=\pi_{c}-\pi_{d}>0$ if $\pi_{d}=0$, so if we can reject the null that $\mathrm{ITT}_{W} \geq 0$, then monotonicity assumption must fail
- Otherwise, the monotonicity assumption is not testable
- Need to decide whether the monotonicity assumption is reasonable or not based on domain knowledge

The exclusion restriction assumption

- Exclusion restriction: instrument affects the outcome only through treatment

$$
Y_{i}(1, w)=Y_{i}(0, w)
$$

- Double-blinding in experiments guarantees exclusion restriction
- The assumption in general is not testable, and need subject-matter knowledge to judge
- The subject-matter knowledge needed is often more subtle than that required to evaluate SUTVA

Moment-based IV estimator

- Causal estimand assuming a super population

$$
\text { CATE }=\frac{\operatorname{ITT}_{Y}}{\operatorname{ITT}_{W}}=\frac{\mathbb{E}\left(Y_{i}(1)-Y_{i}(0)\right)}{\mathbb{E}\left(W_{i}(1)-W_{i}(0)\right)}
$$

- Method-of-moment estimator:

$$
\hat{\tau}^{i v}=\frac{\widehat{\mathrm{TTT}}_{Y}}{\mathrm{ITT}_{W}}
$$

- How to estimate the variance of $\hat{\tau}^{i v}$?
- Estimates $\widehat{T T T}_{Y}$ and $\widehat{\mathrm{TTT}}_{W}$ are correlated because they use the same dataset
- We can approximate the variance of $\hat{\tau}^{i v}$ when N is large (from delta method):

$$
\mathbb{V}\left(\hat{\tau}^{i v}\right) \approx \frac{1}{\mathrm{ITT}_{W}^{4}}\left\{\mathrm{ITT}_{W}^{2} \mathbb{V}\left(\widehat{\mathrm{TTT}}_{Y}\right)+\mathrm{ITT}_{Y}^{2} \mathbb{V}\left(\widehat{\mathrm{ITT}}_{W}\right)-2 \mathrm{ITT}_{Y} \mathrm{ITT}_{W} \operatorname{Cov}\left(\widehat{\mathrm{ITT}}_{W}, \widehat{\mathrm{ITT}}_{Y}\right)\right\}
$$

- Plug-in estimator of $\mathbb{V}\left(\hat{\tau}^{i v}\right)$:

$$
\widehat{\mathbb{V}}\left(\hat{\tau}^{i v}\right) \approx \frac{1}{\mathrm{ITT}_{W}^{4}}\left\{\widehat{\mathrm{TT}}_{W}^{2} \widehat{\mathbb{V}}\left(\widehat{\mathrm{TTT}}_{Y}\right)+\widehat{\mathrm{ITT}}_{Y}^{2} \widehat{\mathbb{V}}\left(\widehat{\mathrm{TTT}}_{W}\right)-2 \widehat{\mathrm{TT}}_{Y} \widehat{\mathrm{TTT}}_{W} \widehat{\mathrm{COV}}\left(\widehat{\mathrm{ITT}}_{W}, \widehat{\mathrm{ITT}}_{Y}\right)\right\}
$$

Estimate the covariance

- The covariance between $\widehat{\mathrm{TT}}_{Y}$ and $\widehat{\mathrm{TT}}_{W}$:

$$
\begin{aligned}
& \operatorname{Cov}\left(\widehat{\mathrm{IT}}_{W}, \widehat{\mathrm{TT}}_{Y}\right)=\operatorname{Cov}\left(\bar{W}_{1}^{\mathrm{obs}}-\bar{W}_{0}^{\mathrm{obs}}, \bar{Y}_{1}^{\mathrm{obs}}-\bar{Y}_{0}^{\mathrm{obs}}\right) \\
& =\frac{\operatorname{Cov}\left(Y_{i}(1), W_{i}(1)\right)}{N_{1}}+\frac{\operatorname{Cov}\left(Y_{i}(0), W_{i}(0)\right)}{N_{0}}
\end{aligned}
$$

- To estimate the covariance $\operatorname{Cov}\left(Y_{i}(z), W_{i}(z)\right)$ for $z=0,1$:

$$
\widehat{\operatorname{Cov}}\left(Y_{i}(z), W_{i}(z)\right)=\frac{1}{N_{z}-1} \sum_{i: Z_{i}=z}\left(W_{i}^{\mathrm{obs}}-\bar{W}_{z}^{\mathrm{obs}}\right)\left(Y_{i}^{\mathrm{obs}}-\bar{Y}_{z}^{\mathrm{obs}}\right)
$$

- So, the plug-in estimator is

$$
\widehat{\operatorname{Cov}}\left(\widehat{\mathrm{TT}}_{W}, \widehat{\mathrm{TT}}_{Y}\right)=\sum_{z=0}^{1} \frac{\sum_{i: Z_{i}=z}\left(W_{i}^{\mathrm{obs}}-\bar{W}_{z}^{\mathrm{obs}}\right)\left(Y_{i}^{\mathrm{obs}}-\bar{Y}_{z}^{\mathrm{obs}}\right)}{N_{Z}\left(N_{z}-1\right)}
$$

- 95% confidence interval of CATE: $\left[\hat{\tau}^{i v}-1.96 \sqrt{\widehat{\mathbb{V}}\left(\hat{\tau}^{i v}\right)}, \hat{\tau}^{i v}+1.96 \sqrt{\widehat{\mathbb{V}}\left(\hat{\tau}^{i v}\right)}\right]$

Simplification for one-sided compliance data

As $W_{i}(0) \equiv 0$, we have

- $\widehat{\mathrm{ITT}}_{W}=\bar{W}_{1}^{\mathrm{obs}}-\bar{W}_{0}^{\mathrm{obs}}=\bar{W}_{1}^{\mathrm{obs}}$
- $\widehat{\mathbb{V}}\left(\widehat{\mathrm{ITT}}_{W}\right)=\frac{s_{W, 1}^{2}}{N_{1}}=\frac{\bar{W}_{1}^{\text {obs }}\left(1-\bar{W}_{1}^{\text {obs }}\right)}{N_{1}-1}$ as $s_{W, 0}^{2}=0$
- $\widehat{\operatorname{Cov}}\left(\widehat{\mathrm{ITT}}_{W}, \widehat{\mathrm{TT}}_{Y}\right)=\frac{\sum_{i: Z_{i}=1}\left(W_{i}^{\text {obs }}-\bar{W}_{1}^{\text {obs }}\right)\left(Y_{i}^{\text {obs }}-\bar{Y}_{1}^{\text {obs }}\right)}{N_{1}\left(N_{1}-1\right)}$

Result in Sommer-Zeger Vitamin Supplement data

ITT Estimates:

- $N_{1}=12+9663+34+2385=12094, N_{0}=74+11514=11588$
- $\widehat{\mathrm{TT}}_{W}=\bar{W}_{1}^{\mathrm{obs}}=\frac{12+9663}{N_{1}}=0.8, \widehat{\mathbb{V}}\left(\widehat{\mathrm{TT}}_{W}\right)=\frac{\bar{W}_{1}^{\mathrm{obs}}\left(1-\bar{W}_{1}^{\mathrm{obs}}\right)}{N_{1}-1}=\frac{0.2 * 0.8}{12093}=0.0036^{2}$
- $\widehat{\mathrm{ITT}}_{Y}=\frac{2385+9663}{N_{1}}-\frac{11514}{N_{0}}=0.0026, \widehat{\mathbb{V}}\left(\widehat{\mathrm{TT}}_{Y}\right)=\sum_{z=0}^{1} \frac{\bar{Y}_{Z}^{\mathrm{obs}}\left(1-\bar{Y}_{Z}^{\mathrm{obs}}\right)}{N_{Z}-1}=0.0009^{2}$
- $95 \% \mathrm{Cl}$ of $\mathrm{ITT}_{Y}:(0.0008,0.0044)$

CATE estimate:

- $\hat{\tau}^{i v}=\frac{0.0026}{0.8}=0.0032$
- $\widehat{\operatorname{Cov}}\left(\widehat{\mathrm{ITT}}_{W}, \widehat{\mathrm{ITT}}_{Y}\right)=-0.0000017$ (correlation -0.05)
- $\widehat{\mathbb{V}}\left(\hat{\tau}^{i v}\right)=0.0012^{2}$

| Assignment | Vitamin
 Z_{i} | Survival
 Supplements
 $W_{i}^{\text {obs }}$ | $Y_{i}^{\text {obs }}$ |
| :---: | :---: | :---: | :---: | | Number of Units |
| :---: |
| $(N=23,682)$ |

- 95% CI of CATE: $(0.0010,0.0055)$
- The as-protocol or as-treated estimates are possibly biased up

Two-stage least square (2SLS) estimator

- Conventionally in econometrics, researchers use a two-stage least square approach for CATE
- The two-stage least square estimator is equivalent to $\hat{\tau}^{i v}$
- Two-stage least square
- Stage 1: regress $W_{i}^{\text {obs }}$ on Z_{i} : the coefficient of Z_{i} is ITT_{W} (regression with no covariate) the fitted coefficient on Z_{i} is $\widehat{\mathrm{TT}}_{W}$
- Stage 1: regress $Y_{i}^{\text {obs }}$ on Z_{i} : the coefficient of Z_{i} is ITT_{Y} (regression with no covariate) the fitted coefficient on Z_{i} is $\widehat{\mathrm{TT}}_{Y}$
- Take the ratio of estimated coefficients, which is exactly $\hat{\tau}^{i v}$
- We can generalize 2SLS to incorporate covariates when estimating ITT_{W} and ITT_{Y}

The Angrist draft lottery data

Background

- Policy makers are interested in whether veterans are adequately compensated for their service.
- Angrist (1991) aims to measure the long-term labor market consequences of military service during the Vietnam era
- Question: estimate the causal effect of serving in the military during the Vietnam War on earnings
- We can not directly compare veterans and non-veterans, as they can be systematically different in unobserved ways, even after adjusting for differences in observed covariates
- Serving in the military or not during the Vietnam War could not randomized directly, but the military draft lottery of the Vietnam War was randomized
- This is called a natural experiment

The Angrist draft lottery data

Randomization

- For each birth year of birth cohort 1950-1952, a random ordering of the 365 days was constructed, a cutoff number was pre-determined, young men of that birth year who had a birth date with order before the cutoff "won" the lottery
- Randomization of birth date, instead of the individuals
- Theoretically, each date should be a unit, but in the book example, we treat each individual as a unit and consider the experiment as a completely randomized experiment (it's actually a stratified cluster randomized experiment).
Consequence is that we will tend to under-estimate the uncertainty of the causal estimator.

Relevance and two-sided non-compliance:

- Drafted individuals were required to prepare to serve in the military if fit for the service
- To serve the military, drafted individuals need to pass medical tests and have achieved minimum education level
- Individuals who were not draft eligible also can volunteer to serve in the military

The Angrist draft lottery data

	Non-Veterans ($N_{\mathrm{c}}=6,675$)				Veterans ($\left.N_{\mathrm{t}}=2,030\right)$			
	Min	Max	Mean	(S.D.)	Min	Max	Mean	(S.D.)
Draft eligible	0	1	0.24	(0.43)	0	1	0.40	(0.49)
Yearly earnings (in \$1,000's)	0	62.8	11.8	(11.5)	0	50.7	11.7	(11.8)
Earnings positive	0	1	0.88	(0.32)	0	1	0.91	(0.29)
Year of birth	50	52	51.1	(0.8)	50	52	50.9	(0.8)

Check assumptions

- Monotonicity: appears to be a reasonable assumption
- The lottery numbers impose restrictions on individuals' behaviors.
- Monotonicity means that no one responds to these restrictions by serving only if they are not required to do so
- It is possible that there are some individuals who would be willing to volunteer if they are not drafted but would resist the draft if required, but it must be a very small fraction and are likely ignorable

The Angrist draft lottery data

	Non-Veterans ($N_{\mathrm{c}}=6,675$)				Veterans ($\left.N_{\mathrm{t}}=2,030\right)$			
	Min	Max	Mean	(S.D.)	Min	Max	Mean	(S.D.)
Draft eligible	0	1	0.24	(0.43)	0	1	0.40	(0.49)
Yearly earnings (in \$1,000's)	0	62.8	11.8	(11.5)	0	50.7	11.7	(11.8)
Earnings positive	0	1	0.88	(0.32)	0	1	0.91	(0.29)
Year of birth	50	52	51.1	(0.8)	50	52	50.9	(0.8)

Check assumptions

- Exclusion restriction: may be questionable
- Consider the never-takers
- Some never-takers are due to medical exemptions or exemptions due to their education or career choices. For them, the lottery numbers would likely not affect their future behaviors and the outcome
- Some never-takers did have exemptions but changed their plan (enter graduate school or move to Canada) if they had a low draft number to avoid serving in the military. For them, exclusion restriction can be violated.

Analysis results

ITT Estimates:

- $\widehat{\mathrm{ITT}}_{W}=0.1460, \widehat{\mathbb{V}}\left(\widehat{\mathrm{ITT}}_{W}\right)=0.0108^{2}$
- $\widehat{\mathrm{ITT}}_{Y}=-0.2129, \widehat{\mathrm{~V}}\left(\widehat{\mathrm{TT}}_{W}\right)=\sum_{z=0}^{1} \frac{\bar{Y}_{Z}^{\text {obs }}\left(1-\bar{Y}_{z}^{\mathrm{obs}}\right)}{N_{z}\left(N_{z}-1\right)}=0.1980^{2}$
- $95 \% \mathrm{Cl}$ of $\mathrm{ITT}_{Y}:(-0.6010,0.1752)$

If we are willing to assume monotonicity and exclusion restriction CATE estimate:

- $\hat{\tau}^{i v}=\frac{-0.2129}{0.1460}=-1.46$
- $\widehat{\mathbb{V}}\left(\hat{\tau}^{i v}\right)=1.36^{2}$
- $95 \% \mathrm{Cl}$ of CATE: $(-4.13,1.2)$

Weak instrument

- The instrumental variable is a weak instrument if the compliance probability (π_{c} or ITT_{W}) is small
- Problems using weak instrument
- $\hat{\tau}^{i v}=\frac{\mathrm{ITT}_{Y}}{\mathrm{I} \widehat{T T}_{W}}$: the ratio is very unstable. If ITT_{W} is close to 0 , then a small error (perturbation) in $\widehat{\mathrm{TTT}}_{W}$ can lead to a large error in $\hat{\tau}^{i v}$
- If the exclusion restriction assumption is violated, the bias in our estimator assuming exclusion restriction is inversely proportional to π_{c}
- How to identify weak instrument?
- In the first stage linear regression model $W_{i}^{\text {obs }}=\alpha+\pi_{c} W_{i}+\varepsilon_{i}$, calculate the F-statistics to test whether $\pi_{c}=0$
- A rule of thumb is to check whether the F-statistics it larger to 10 or not.
- F-statistics smaller than 10 indicates a weak instrument

