Causal Inference Methods and Case Studies

STAT24630 Jingshu Wang

Lecture 11

Topic: Conditional randomized experiment, unconfoundedness

- Conditional randomized experiment
 - Unconfoundedness
 - Simpson's paradox
 - Balancing score
 - Estimators: outcome regression, IPW, matching

Conditional randomized experiment

- Treatment assignment mechanism depends on pre-treatment covariates X_i
 - Example: stratified randomized experiment, proportion of treated units can be different in different strata
- Unconfoundedness property: $W_i \perp (Y_i(0), Y_i(1)) \mid X_i$
 - Assignment mechanism does not depend any unobserved **U** pretreatment confounders
 - X_i can either be continuous or discrete
 - If X_i is discrete or discretized \rightarrow stratified randomized experiment
- Propensity score: $e(X_i) = P(W_i = 1 | X_i) \in (0,1)$
 - Overlap assumption: $e(x) \neq 0$ or 1 for any x (otherwise we won't have data to identify $\tau(x)$)
 - In stratified randomized experiment: $e(X_i = j) = P(W_i = 1 | X_i = j) = N_t(j)/N(j)$
- Identify conditional average treatment effect under unconfoundedness

$$\tau(\mathbf{x}) = \mathbb{E}(Y_i(1) - Y_i(0) | \mathbf{X}_i = \mathbf{x}) = \mathbb{E}(Y_i(1) | \mathbf{X}_i = \mathbf{x}, W_i = 1) - \mathbb{E}(Y_i(0) | \mathbf{X}_i = \mathbf{x}, W_i = 0) = \mathbb{E}(Y_i^{\text{obs}} | \mathbf{X}_i = \mathbf{x}, W_i = 1) - \mathbb{E}(Y_i^{\text{obs}} | \mathbf{X}_i = \mathbf{x}, W_i = 0)$$

Conditioning on confounded covariates

• (Population) average treatment effect

$$\tau = \mathbb{E}(\tau(\mathbf{X}_i)) = \mathbb{E}\left(\mathbb{E}(Y_i^{\text{obs}} | \mathbf{X}_i, W_i = 1) - \mathbb{E}(Y_i^{\text{obs}} | \mathbf{X}_i, W_i = 0)\right)$$
$$= \sum_{\mathbf{X}} \left(\mathbb{E}(Y_i^{\text{obs}} | \mathbf{X}_i = \mathbf{x}, W_i = 1) - \mathbb{E}(Y_i^{\text{obs}} | \mathbf{X}_i = \mathbf{x}, W_i = 0)\right) P(\mathbf{X}_i = \mathbf{x})$$

Shared weights

• Conditioning on the confounding covariates X_i is important $\mathbb{E}(Y_i^{\text{obs}}|W_i = 1) - \mathbb{E}(Y_i^{\text{obs}}|W_i = 0)$ $= \sum_{x} \mathbb{E}(Y_i^{\text{obs}}|X_i = x, W_i = 1) P(X_i = x|W_i = 1) - \sum_{x} \mathbb{E}(Y_i^{\text{obs}}|X_i = x, W_i = 1) P(X_i = x|W_i = 0)$ Different weights

• If
$$e(X_i) = P(W_i = 1 | X_i) \equiv c$$
, then $W_i \perp X_i \Longrightarrow P(X_i = x | W_i = 1) = P(X_i = x | W_i = 0)$

Simpson's paradox: kidney stone treatment

- Compare the success rates of two treatment of kidney stores
- Treatment A: open surgery; treatment B: small puctures

	Treatment A	Treatment B		
Small stones	93% (81/87)	87% (234/270)		
Large stones	73% (192/263)	69% (55/80)		
Both	78% (273/350)	83% (289/350)		

 $P(X_i = x)$

(87 + 270)/700=0.51 (263 + 80)/700=0.49

- What is the confounder here? Size of the stone

 - Small stone: propensity score is $\frac{87}{87+270} = 0.24$ Large stone: propensity score is $\frac{263}{263+80} = 0.77$
- True average causal effect: $83.2\% 78.2\% : (93\% \times 0.51 + 73\% \times 0.49) (87\% \times 0.49)$ $0.51 + 69\% \times 0.49$
- We also mentioned Simpson's paradox in Lecture 6 when choosing test statistics for Fisher's exact p-value in stratified randomized experiment

Simpson's paradox: UC Berkeley gender bias

- In the early 1970s, the University of California, Berkeley was sued for gender discrimination over admission to graduate school.
- "Causal" effect of sex on application admission (data of Year 1973 admission)

	All		Men		Women	
	Applicants	Admitted	Applicants	Admitted	Applicants	Admitted
Total	12,763	41%	8,442	44%	4,321	35%

Confounding covariate: department

Table 1: Data From Six Largest Departments of 1973 Berkeley Discrimination Case

Department	Men		Women			
	Applicants	Admitted	Applicants	Admitted	" $e(X_i)$ "	$P(\boldsymbol{X}_i)$
Α	825	62%	108	82%	0.12	0.21
в	560	63%	25	<mark>68%</mark>	0.04	0.13
С	325	37%	593	34%	0.65	0.21
D	417	33%	375	<mark>35%</mark>	0.47	0.18
E	191	28%	393	24%	0.67	0.13
F	272	6%	341	7%	0.56	0.14

For data from departments A-F:

- Raw average admission rate between men and women: 46% V.S. 30%
- After adjusting for department: 40% V.S. 44%

Balancing score

- Under unconfoundedness, we can remove all biases in comparing treated and control units by conditioning on each level of X_i
- Too few samples to compare at each level if too many variables in X_i
- Balancing score $b(X_i)$: lower-dimensional functions of X_i that remove differences between treatment and control groups

$$W_i \perp X_i \mid b(X_i)$$

- Balancing scores are not unique: any one-to-one mapping of a balancing score is a balancing score
- Propensity score $e(X_i)$ is a balancing score
 - We want to show that $P(W_i = 1 | X_i, e(X_i)) = P(W_i = 1 | e(X_i))$
 - $P(W_i = 1 | X_i, e(X_i)) = P(W_i = 1 | X_i) = e(X_i)$
 - By the law of total expectation

$$P(W_i = 1 | e(X_i)) = \mathbb{E}[W_i | e(X_i)] = \mathbb{E}[\mathbb{E}[W_i | X_i, e(X_i)] | e(X_i)]$$

= $\mathbb{E}[\mathbb{E}[W_i | X_i] | e(X_i)] = \mathbb{E}[e(X_i) | e(X_i)] = e(X_i)$

• Propensity score the coarsest balancing score (Lemma 12.3): $e(X_i)$ is a function of any $b(X_i)$

Unconfoundedness with balancing score

• Why do we care about balancing score?

 $W_i \perp (Y_i(0), Y_i(1)) \mid \mathbf{X}_i \Longrightarrow W_i \perp (Y_i(0), Y_i(1)) \mid b(\mathbf{X}_i)$

- Given a vector of covariates that ensure unconfoundedness, adjustment for differences in propensity scores removes all biases associated with differences in the covariates
- For the propensity score $W_i \perp (Y_i(0), Y_i(1)) \mid e(X_i)$
- $e(X_i)$ can be reviewed as a summary score of the pre-treatment covariates

$$\tau = \mathbb{E}\left(\mathbb{E}\left(Y_i^{\text{obs}} \middle| e(\boldsymbol{X}_i), W_i = 1\right) - \mathbb{E}\left(Y_i^{\text{obs}} \middle| e(\boldsymbol{X}_i), W_i = 0\right)\right)$$

• The proof can be found on Page 267, Imbens and Rubin Chapter 12.3

Estimate ATE under unconfoundedness

- Adjust for confounding variables when estimating the average treatment effect τ
- Three strategies
 - Outcome regression
 - Inverse probability weighting
 - Matching
- We are not introducing new methods to estimate ATE for randomized experiments, we review the estimators we discuss in previous lectures from a different angle, to prepare us to perform causal inference in observation studies

Outcome regression estimator

•
$$\tau = \mathbb{E}\left(\mathbb{E}\left(Y_i^{\text{obs}} | \boldsymbol{X}_i, W_i = 1\right) - \mathbb{E}\left(Y_i^{\text{obs}} | \boldsymbol{X}_i, W_i = 0\right)\right)$$

- Define the conditional expectations $\mu_w(\mathbf{x}) = \mathbb{E}(Y_i^{\text{obs}} | \mathbf{X}_i = \mathbf{x}, W_i = w)$
- We can estimate the conditional expectations via a regression model and obtain $\hat{\mu}_w(x)$
- Estimator for the ATE: $\hat{\tau}_{\text{reg}} = \frac{1}{N} \left\{ \sum_{i=1}^{N} W_i \left(Y_i^{\text{obs}} \hat{\mu}_0(X_i) \right) + (1 W_i) \left(\hat{\mu}_1(X_i) Y_i^{\text{obs}} \right) \right\}$
- For example, if we assume a linear regression model $\mathbb{E}(Y_i^{\text{obs}} | X_i, W_i) = \alpha + \tau W_i + \beta^T X_i$

•
$$\hat{\mu}_w(\mathbf{x}) = \hat{\alpha} + \hat{\tau}w + \hat{\boldsymbol{\beta}}^T \mathbf{x}, \hat{\tau}_{reg} = \hat{\tau}$$

- In practice, we can use any kinds of machine learning approaches (linear regressions, logistic regression, random forest, SVM, deep learning, ...) to obtain $\hat{\mu}_w(\mathbf{x})$
- Drawback of outcome regression approach: interpretability of the assumption
 - a regression model on $\mathbb{E}(Y_i^{\text{obs}} | \mathbf{X}_i = \mathbf{x}, W_i = w)$ is modeling the observed data
 - Need to explain the underlying model assumptions on the potential outcomes (like what we did in Lecture 6) : a model for $\mathbb{E}((Y_i(0), Y_i(1)) | X_i, W_i)$

Inverse probability weighting (IPW)

- What if we don't want to put a model assumption on the observed (potential) outcome?
 - If X_i is unconfounded ($W_i \perp X_i$) and the model assumption is wrong, we may lose efficiency, but $\hat{\tau}_{reg}$ is likely still unbiased for τ
 - If X_i are confounding covariates and the model assumption is wrong, $\hat{\tau}_{reg}$ is often be a biased estimator of τ
- Weighting makes use the following properties to estimate $\mathbb{E}(Y_i(1))$ and $\mathbb{E}(Y_i(0))$

$$\mathbb{E}\left[\frac{Y_i^{\text{obs}} \cdot W_i}{e(X_i)}\right] = \mathbb{E}_{\text{sp}}\left[Y_i(1)\right], \text{ and } \mathbb{E}\left[\frac{Y_i^{\text{obs}} \cdot (1 - W_i)}{1 - e(X_i)}\right] = \mathbb{E}_{\text{sp}}\left[Y_i(0)\right]$$

Proof:

$$\mathbb{E}\left[\frac{Y_i^{\text{obs}} \cdot W_i}{e(X_i)}\right] = \mathbb{E}_{\text{sp}}\left[\mathbb{E}\left[\left.\frac{Y_i^{\text{obs}} \cdot W_i}{e(X_i)}\right| X_i\right]\right] = \mathbb{E}_{\text{sp}}\left[\mathbb{E}\left[\left.\frac{Y_i(1) \cdot W_i}{e(X_i)}\right| X_i\right]\right] = \mathbb{E}_{\text{sp}}\left[\frac{\mathbb{E}_{\text{sp}}[Y_i(1)|X_i] \cdot \mathbb{E}_W[W_i|X_i]}{e(X_i)}\right] = \mathbb{E}_{\text{sp}}[Y_i(1)|X_i] = \mathbb{E}_{\text{sp}}[Y_i(1)|X_i] = \mathbb{E}_{\text{sp}}[Y_i(1)|X_i]$$

Same derivation for the second equation.

Inverse probability weighting (IPW)

- What if we don't want to put a model assumption on the observed (potential) outcome?
 - If X_i is unconfounded ($W_i \perp X_i$) and the model assumption is wrong, we may lose efficiency, but $\hat{\tau}_{reg}$ is likely still unbiased for τ
 - If X_i are confounding covariates and the model assumption is wrong, $\hat{\tau}_{reg}$ is often be a biased estimator of τ
- Weighting makes use the following properties to estimate $\mathbb{E}(Y_i(1))$ and $\mathbb{E}(Y_i(0))$

$$\mathbb{E}\left[\frac{Y_i^{\text{obs}} \cdot W_i}{e(X_i)}\right] = \mathbb{E}_{\text{sp}}\left[Y_i(1)\right], \text{ and } \mathbb{E}\left[\frac{Y_i^{\text{obs}} \cdot (1 - W_i)}{1 - e(X_i)}\right] = \mathbb{E}_{\text{sp}}\left[Y_i(0)\right]$$

- We give a weight $\lambda_i = 1/P(W_i = w | X_i)$ to each unit *i*, inversely proportional to the probability of being assigned to the group *w*
- Intuitively, unit that has a smaller $e(X_i)$ has less chance to appear in the treatment group, so we should give it a higher weight

Inverse probability weighting estimator

$$\hat{\tau}_{\text{IPW}} = \frac{1}{N} \sum_{i=1}^{N} \frac{W_i \cdot Y_i^{\text{obs}}}{e(X_i)} - \frac{1}{N} \sum_{i=1}^{N} \frac{(1 - W_i) \cdot Y_i^{\text{obs}}}{1 - e(X_i)}$$

$$= \frac{1}{N} \sum_{i:W_i=1} \lambda_i \cdot Y_i^{\text{obs}} - \frac{1}{N} \sum_{i:W_i=0} \lambda_i \cdot Y_i^{\text{obs}},$$

where

$$\lambda_i = \frac{1}{e(X_i)^{W_i} \cdot (1 - e(X_i))^{1 - W_i}} = \begin{cases} 1/(1 - e(X_i)) & \text{if } W_i = 0, \\ 1/e(X_i) & \text{if } W_i = 1. \end{cases}$$

IVW estimator in stratified randomized experiment

• Propensity score in each strata is $e(X_i = j) = P(W_i = 1 | X_i = j) = \frac{N_t(j)}{N(j)}$

•
$$\hat{\tau}_{IPW} = \frac{1}{N} \sum_{j=1}^{K} \left(\sum_{i:B_i = j} \frac{N(j)}{N_t(j)} W_i Y_i^{obs} - \sum_{i:B_i = j} \frac{N(j)}{N_c(j)} (1 - W_i) Y_i^{obs} \right) = \frac{1}{N} \sum_{j=1}^{K} N(j) \left(\overline{Y}_t^{obs} - \overline{Y}_c^{obs} \right)$$

• Same as the estimator from Neyman's repeated sampling approach

Matching estimator

- In conditional randomized experiments, the IVW estimator do not have any further assumptions as the propensity scores $e(X_i)$ are known.
- Instead of weighting based on $e(X_i)$, we can also perform matching based on $e(X_i)$
- We can match treatment and control unit to form a pair if their propensity scores are very close to each other
 - To assess the effect of job-training program on a thirty-ear-old women with two children under the age of six, with a high school education and four months of work experience in the past 12 months, we want to compare her with a thirty-ear-old women with two children under the age of six, with a high school education and four months of work experience in the past 12 months, who did not attend the program
- As $W_i \perp (Y_i(0), Y_i(1)) \mid e(X_i)$, we can treat the matched data as from a paired randomized experiment