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Lecture 12

• Observational study v.s. conditional randomized experiment

• Propensity score estimation

• Logistic regression

• Model selection

• trimming

• Propensity score stratification

• Assess covariates balancing

Topic: Propensity score estimation, 
trimming, stratification



Causal inference with observational data
• The core rationale is to conceptualize observational studies as conditional randomized 

experiments
• Analyze observational data as if treatment has been randomly assigned conditional on 

measured pre-treatment covariates 𝑿! (unconfoundedness: 𝑊! ⊥ 𝑌! 0 , 𝑌! 1 	|	 𝑿! 	)

• Not all observational data can be conceptualized as a conditional randomized 
experiment!

-- Causal Inference: What If (Herman and Robins, 2020)



Observational study V.S. conditional randomized 
experiments

1.  

2.  

Conditional randomized experiment: 𝑊! ⊥ 𝑌! 0 , 𝑌! 1 	|	 𝑿!	is a fact as we 
control treatment assignment mechanism

Observational study: 𝑊! ⊥ 𝑌! 0 , 𝑌! 1 	|	 𝑿!	is an assumption. It 
is always possible that this assumption is 
violated.

Conditional randomized experiment: 𝑒 𝑿! = 𝑃 𝑊! = 1|	𝑿!  is known

Observational study: 𝑒 𝑿! = 𝑃 𝑊! = 1|	𝑿!  needs to be 
estimated. Can introduce bias and suffer 
from estimation uncertainty



Need to evaluate identifiability assumptions carefully
• SUTVA

o Can any variable have a causal effect? Are there multiple versions of assignment? 
We need “sufficiently well-defined interventions”
Example: effect of sex, heart transplant by different techniques

o Interventions may not be well defined as the experiment is not really conducted

• Overlap
𝑒 𝑿! = 𝑃 𝑊! = 1|	𝑿! ∈ 0,1  or 𝑃 𝑊! = 𝑤| 	𝑿!= 𝒙 > 0 for all 𝒙 and 𝑤
o Guaranteed by the nature of experiments
o Not guaranteed in observational studies

• 𝐿 only contains pre-treatment covariates

• Unconfoundedness: 𝑊! ⊥ 𝑌! 0 , 𝑌! 1 	|	 𝑿! is an untestable assumption!!



Estimate ATE with observation data

• We can still use outcome regression, IPW and matching estimators

• For IPW and matching estimators, as the propensity scores are unknown, we need to 
estimate the propensity scores from data first

• Once we estimate the propensity scores, we can replace the true propensity scores by 
their estimates in IPW or matching

• We need good estimates of the true propensity scores à not an easy task!

• We will also discuss other estimators that are more robust to a poor estimate of the 
propensity scores: blocking, trimming, doubly robust estimator 



Propensity score estimation procedure
What is the criteria of a good estimated propensity score?
• Estimate 𝑒 𝑿! = 𝑃 𝑊! = 1|	𝑿! : a classification problem but not exactly a classification 

problem
• The goal is not simply minimizing the mean square error or classification error
• A good propensity score needs to achieve covariates balancing 𝑊! ⊥ 	𝑿! 	 |	 �̂�(𝑿!)
• Even if �̂�(𝑿!) is NOT an accurate estimate of the true 𝑒 𝑿! , as long as it achieves 

covariates balancing, �̂�(𝑿!) is at least a balancing score which leads to 
unconfoundedness given �̂�(𝑿!) 

• A common procedure in estimating the propensity score
1) Use an initial specified model, such as logistic regression, to obtain �̂�(𝑿!) 
2) Check covariate balancing based on weights or matched sets defined by �̂�(𝑿!) 
3) We can iterate back and forth between the above two stages, each time refining the 

specified model

• During the whole process, we do not use the outcome data 𝑌!"#$



The school meal program data (Example 10.3 Peng’s book)

• A subsample of the data from NHANES 2007–2008 to study whether participation in 
school meal programs led to an increase in BMI for school children

• 𝑁% =	1284 children participated in school meal program, and 𝑁& =	1046 children did not

• Pre-treatment covariates



The school meal program data



Check covariate balancing of the original data

We can plot the t statistics
• Pre-treatment covariates are not balanced à possible confounding variables



Logistic regression: specify a model to obtain �̂�(𝑿!) 
• Logistic regression is an extension of linear regression to regression binary response  

variable 𝑊! on the predictors 6𝑿!
• Here, the predictors 6𝑿! is not necessary the original set of pre-treatment covariates 
𝑿!, we may drop some irrelevant covariates and add interaction terms

• Logistic regression assumes the model

𝜋! = 𝑃 𝑊! = 1|6𝑿! =
𝑒'(𝜷!*𝑿"

1 + 𝑒'(𝜷!*𝑿"
or equivalently, logit 𝑃 𝑊! = 1|6𝑿! = 𝛼 + 𝜷,6𝑿!

• It also assumes that 𝑊!~Bernoulli(𝜋!)

• The log-likelihood function of the above model is 

F
!-.

/
𝑊!(𝛼 + 𝜷,6𝑿!) − ln(1 + exp(𝛼 + 𝜷,6𝑿!))

• We maximize the likelihood to obtain estimates J𝛼 and K𝜷, and �̂� 𝑿! = 0#$%&𝜷
!(𝑿"

.(0#$%&𝜷!(𝑿"



Selecting the covariates and interactions

• A common model just include all pre-treatment covariates without interactions in 
the logistic regression

• One can also perform model selection to find the best logistic regression with the 
interaction terms (will show an example in the R example)



Trimming to improve overlapping
• We implicitly assume the overlap assumption: 𝑒 𝒙 ≠ 0	or	1 for 

any 𝒙 (otherwise we won’t have data to identify τ 𝒙 )

• If the estimated propensity scores are close to 0 or 1 for some 
units, the overlap assumption might be violated at these values’ 
𝑿! 

• Trimming: remove units with very small or very large propensity 
scores
• Remove all units with estimated propensity scores in the 

intervals [0, 𝛼.] or [1 − 𝛼1, 1] 
• 𝛼. = 𝛼1 = 0.05 or 0.1 (ad-hoc)
• Optimal 𝛼. and 𝛼1 for trimming (Chapter 16)
• You may refit the propensity score model after trimming



Elze, Markus C., et al. "Comparison of propensity score methods 
and covariate adjustment: evaluation in 4 cardiovascular 
studies." Journal of the American College of Cardiology 69.3 (2017): 
345-357.



Propensity score stratification

• Stratify individuals into 𝐽 blocks based on the estimated propensity score
• Also called blocking or subclassification
• Define a set of boundary points: 0 = 𝑏2 < 𝑏. < ⋯ < 𝑏3 = 1

• Only requires the correct ordering of estimated propensity scores rather than their exact 
values à relatively robust compared with other methods that we will discuss later

• How to find the boundary points? General guidelines
• max

4-.,⋯,3
|𝑏4 − 𝑏47.| relatively small

• There are not too few controls/treated units (say 1 or 2) in each strata/block
• Covariate balancing within each strata is good



Find boundary points

• Ideally, we want to stratify samples into blocks so that each block has the exact same 
value of �̂�(𝑋!)

• A simple and common strategy
• Choose 𝐾	 = 	5	as a rule of thumb
• Find the boundary points so that each strata has roughly the same number of total 

units
• 𝑏4 selected as the 𝑗 th K-quantile of the estimated propensity scores 

• Another strategy is to use a sequential splitting approach
• Useful if overlapping in the original data is poor



Sequential splitting

• Steps:
1. Preprocessing: remove units if their estimated propensity score is too large or too 

small
• Define                           , remove a control unit 𝑖 if �̂� 𝑿! <	et

• Define                             , remove a treated unit 𝑖 if �̂� 𝑿! < �̅�&

• Ensure that there are both enough treated and control units within each strata



Sequential splitting
• Steps:

1. Preprocessing: remove units if their estimated propensity score is too large or too small
2. Sequential block splitting

• Start with a single block 𝐽 = 1 with 𝑏" = et and 𝑏# = �̅�$
• Define linearized propensity score 

4𝑙 𝑿! = ln
�̂� 𝑿!

1 − �̂� 𝑿!
• For each of the current blocks, we assess whether we need to further split it into two

• Define the two-sample test statistics (assume equal variance of the two groups)

• Need to split Block 𝑗 into two blocks if 𝑡% > 𝑡&'( = 1.96
• Define the two sub-blocks: find the median of �̂� 𝑿!  within block 𝑗 as 𝑏%)

• Sub-block 1: all units with �̂� 𝑿! < 𝑏%); sub-block 2: all units with �̂� 𝑿! ≥ 𝑏%)



Sequential splitting

• Steps:
1. Preprocessing: remove units if their estimated propensity score is too large or too small
2. Sequential block splitting
3. Stopping rule

Stop if 
• The block does not need to split 𝑡% ≤ 𝑡&'( 
or
• has a small enough size min 𝑁$ 𝑗 , 𝑁* 𝑗 < 𝑁+!,,# = 3 or

number of total units of a new stratum < 𝑝 + 2 (𝑝 is the number of covariates possibly 
used in regression adjustment)



Assess covariates balancing after stratification
• Within each block, we test for the null hypothesis

• For each covariate 𝑘, construct t-statistics within block 𝑗
• Sample mean difference and its estimated squared standard error (assume equal variance) 

• Within-block t-statistics: 𝑧. 𝑗 = /0!
"(%)

3𝕍!
"(%)

• Overall t-statistics averaged across blocks 



Covariate balancing for meal program data 

• We simply stratify units into 𝐾	 = 	5 blocks with equal number of units 
• Visualization of the t-statistics
• Much better compared to the original data


