Causal Inference Methods and Case Studies

STAT24630 Jingshu Wang

Lecture 15

Topic: Doubly robust estimator

• Doubly robust estimator

Doubly robust estimator

- Outcome regression relies on a correctly specified model for the (potential) outcomes depending on X_i
- IPW / Matching relies on a correctly specified model for the propensity score
- Doubly robust estimator: provide a good estimate of the propensity score when either the outcome or the propensity score model is correct

• Define
$$f(1, \boldsymbol{X}_i, Y_i^{\text{obs}}) = \frac{Y_i^{\text{obs}} 1_{W_i=1}}{\tilde{e}(\boldsymbol{X}_i)} - \frac{1_{W_i=1} - \tilde{e}(\boldsymbol{X}_i)}{\tilde{e}(\boldsymbol{X}_i)} \tilde{\mu}_1(\boldsymbol{X}_i)$$

$$f(0, \mathbf{X}_i, Y_i^{\text{obs}}) = \frac{Y_i^{\text{obs}} 1_{W_i=0}}{1 - \tilde{e}(\mathbf{X}_i)} - \frac{1_{W_i=0} - (1 - \tilde{e}(\mathbf{X}_i))}{1 - \tilde{e}(\mathbf{X}_i)} \tilde{\mu}_0(\mathbf{X}_i)$$

- If we correctly specify the propensity score model, then $\tilde{e}(X_i) = e(X_i)$
- If we correctly specify the outcome model, then $\tilde{\mu}_w(X_i) = \mu_w(X_i)$

Doubly robust estimator

$$f(1, \boldsymbol{X}_i, Y_i^{\text{obs}}) = \frac{Y_i^{\text{obs}} 1_{W_i=1}}{\tilde{e}(\boldsymbol{X}_i)} - \frac{1_{W_i=1} - \tilde{e}(\boldsymbol{X}_i)}{\tilde{e}(\boldsymbol{X}_i)} \tilde{\mu}_1(\boldsymbol{X}_i)$$

$$f(0, \boldsymbol{X}_{i}, Y_{i}^{\text{obs}}) = \frac{Y_{i}^{\text{obs}} 1_{W_{i}=0}}{1 - \tilde{e}(\boldsymbol{X}_{i})} - \frac{1_{W_{i}=0} - (1 - \tilde{e}(\boldsymbol{X}_{i}))}{1 - \tilde{e}(\boldsymbol{X}_{i})} \tilde{\mu}_{0}(\boldsymbol{X}_{i})$$

- $\tilde{e}(X_i)$, $\tilde{\mu}_w(X_i)$: our working models (model under our model assumption)
- $e(X_i)$, $\mu_w(X_i)$: true model that we don't know
- Double robust property

$$\mathbb{E}\left[f(1, \boldsymbol{X}_{i}, Y_{i}^{\text{obs}}) \mid \boldsymbol{X}_{i}\right] = \frac{\left(\mu_{1}(\boldsymbol{X}_{i}) - \tilde{\mu}_{1}(\boldsymbol{X}_{i})\right)\left(e(\boldsymbol{X}_{i}) - \tilde{e}(\boldsymbol{X}_{i})\right)}{\tilde{e}(\boldsymbol{X}_{i})} + \mu_{1}(\boldsymbol{X}_{i})$$
$$\mathbb{E}\left[f(0, \boldsymbol{X}_{i}, Y_{i}^{\text{obs}}) \mid \boldsymbol{X}_{i}\right] = \frac{\left(\mu_{0}(\boldsymbol{X}_{i}) - \tilde{\mu}_{0}(\boldsymbol{X}_{i})\right)\left(\tilde{e}(\boldsymbol{X}_{i}) - e(\boldsymbol{X}_{i})\right)}{1 - \tilde{e}(\boldsymbol{X}_{i})} + \mu_{0}(\boldsymbol{X}_{i})$$

• If either the outcome or propensity score model is correct, we have $\mathbb{E}\left(f(w, X_i, Y_i^{\text{obs}})\right) = \mathbb{E}(Y_i(w) | X_i)$ Doubly robust estimator

$$f(1, \boldsymbol{X}_i, Y_i^{\text{obs}}) = \frac{Y_i^{\text{obs}} 1_{W_i=1}}{\tilde{e}(\boldsymbol{X}_i)} - \frac{1_{W_i=1} - \tilde{e}(\boldsymbol{X}_i)}{\tilde{e}(\boldsymbol{X}_i)} \tilde{\mu}_1(\boldsymbol{X}_i)$$

IPW estimate of $\mathbb{E}(Y_i(1) | X_i)$

Adjust for bias if the propensity score model is incorrect (if PS model is correct, then this part has expectation 0)

An equivalent expression:

$$f(1, \mathbf{X}_i, Y_i^{\text{obs}}) = \tilde{\mu}_1(\mathbf{X}_i) + rac{1_{W_i=1}}{\tilde{e}(\mathbf{X}_i)} (Y_i(1) - \tilde{\mu}_1(\mathbf{X}_i))$$

Outcome regression estimate of $\mathbb{E}(Y_i(1) | X_i)$

Adjust for bias if the outcome regression model is incorrect (if PS model is correct, then this part has expectation 0)

The DR estimator:

$$\widehat{\tau} = \frac{1}{N} \sum_{i} \left[\frac{Y_i^{\text{obs}} \mathbb{1}_{W_i=1}}{\widehat{e}(\boldsymbol{X}_i)} - \frac{\mathbb{1}_{W_i=1} - \widehat{e}(\boldsymbol{X}_i)}{\widehat{e}(\boldsymbol{X}_i)} \widehat{\mu}_1(\boldsymbol{X}_i) \right] - \frac{1}{N} \sum_{i} \left[\frac{Y_i^{\text{obs}} \mathbb{1}_{W_i=0}}{\mathbb{1} - \widehat{e}(\boldsymbol{X}_i)} - \frac{\mathbb{1}_{W_i=0} - (1 - \widehat{e}(\boldsymbol{X}_i))}{1 - \widehat{e}(\boldsymbol{X}_i)} \widehat{\mu}_0(\boldsymbol{X}_i) \right]$$

A simulation study (Kang and Schafer. 2007. Statistical Science)

- The deteriorating performance of propensity score weighting methods when the model is mis-specified
- Setup:
 - 4 covariates X_i^* : all are i.i.d. standard normal
 - Outcome model: linear model
 - Propensity score model: logistic model with linear predictors
 - Misspecification induced by measurement error:

•
$$X_{i1} = \exp(X_{i1}^*/2)$$

•
$$X_{i2} = X_{i2}^*/(1 + \exp(X_{1i}^*) + 10)$$

•
$$X_{i3} = (X_{i1}^* X_{i3}^* / 25 + 0.6)^3$$

- $X_{i4} = (X_{i1}^* + X_{i4}^* + 20)^2$
- Weighting estimators to be evaluated:
 - HT: IPW in the original form
 - IPW: IPW with normalized weights
 - Weighted least squares regression with covariates
 - Doubly-robust estimator

Results: if the propensity score model is correct

		Bias		RMSE				
Sample size	Estimator	logit	True	logit	True			
(1) Both models correct								
<i>n</i> = 200	HT	0.33	1.19	12.61	23.93			
	IPW	-0.13	-0.13	3.98	5.03			
	WLS	-0.04	-0.04	2.58	2.58			
	DR	-0.04	-0.04	2.58	2.58			
<i>n</i> = 1000	HT	0.01	-0.18	4.92	10.47			
	IPW	0.01	-0.05	1.75	2.22			
	WLS	0.01	0.01	1.14	1.14			
	DR	0.01	0.01	1.14	1.14			
(2) Propensity score model correct								
n = 200	HT	-0.05	-0.14	14.39	24.28			
	IPW	-0.13	-0.18	4.08	4.97			
	WLS	0.04	0.04	2.51	2.51			
	DR	0.04	0.04	2.51	2.51			
<i>n</i> = 1000	HT	-0.02	0.29	4.85	10.62			
	IPW	0.02	-0.03	1.75	2.27			
	WLS	0.04	0.04	1.14	1.14			
	DR	0.04	0.04	1.14	1.14			

- Use the true propensity score is worse than using the estimated propensity score when the propensity score model is correct
- Normalizing weights can help a lot in reducing the variance

Results: if the propensity score model is incorrect

		Bias		RMSE				
Sample size	Estimator	logit	True	logit	True			
(3) Outcome model correct								
n = 200	HT	24.25	-0.18	194.58	23.24			
	IPW	1.70	-0.26	9.75	4.93			
	WLS	-2.29	0.41	4.03	3.31			
	DR	-0.08	-0.10	2.67	2.58			
<i>n</i> = 1000	HT	41.14	-0.23	238.14	10.42			
	IPW	4.93	-0.02	11.44	2.21			
	WLS	-2.94	0.20	3.29	1.47			
	DR	0.02	0.01	1.89	1.13			
(4) Both models incorrect								
n = 200	HT	30.32	-0.38	266.30	23.86			
	IPW	1.93	-0.09	10.50	5.08			
	WLS	-2.13	0.55	3.87	3.29			
	DR	-7.46	0.37	50.30	3.74			
<i>n</i> = 1000	HT	101.47	0.01	2371.18	10.53			
	IPW	5.16	0.02	12.71	2.25			
	WLS	-2.95	0.37	3.30	1.47			
	DR	-48.66	0.08	1370.91	1.81			

- Double robust estimator perform better when outcome model is correct but propensity score model is wrong
- Double robust estimator can perform worse when both models are wrong (maybe we should also normalize the weights in DR)