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Lecture 16

• Assessing unconfoundedness

• Negative control outcome

• Negative control treatment

• Sensitivity analysis

• Bound under no assumptions

• Bound for the smoking example

Topic: Assessing unconfoundedness, sensitivity analysis



Unconfoundedness and balance

• Unconfoundedness property:   𝑊! ⊥ 𝑌! 0 , 𝑌! 1 	|	 𝑿!
• This is an untestable assumption: we can never test for the unconfoundedness property as 

it is an assumption on the partially unmeasured potential outcomes

• We assess balancing of covariates and test for 𝑊! ⊥ 	𝑿! |	 𝑒(𝑿!)
• What we really care about is the balance of potential outcomes: 

𝑊! ⊥ 𝑌! 0 , 𝑌! 1 	 𝑒(𝑿!
within strata of observed covariates, potential outcomes corresponding to both 
treatment conditions need to be balanced between groups

• Covariate balancing is a necessary, but not sufficient condition, especially when there are 
unmeasured confounding pre-treatment covariates



• We can not test for unconfoundedness but we can assess the credibility of the 
unconfoundedness assumption indirectly

• Three approaches
• Negative control outcome: choose proxy of the real outcome that 

1. Share a similar set of possible unmeasured confounding variables with the real 
outcome

2. We know a priori that the treatment have zero causal effect on the proxy 
• Negative control treatment: choose new “treatment” that

1. Share a similar set of possible unmeasured confounding variables with the real 
treatment

2. We know a priori that the new “treatment” has zero causal effect on the outcome
• Assess robustness of the ATE estimation given different sets of pre-treatment covariates

Assessing unconfoundedness
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Negative control outcome (pseudo-outcome) 
• One common way to find a good proxy of the outcome is the lagged outcome

• E.x., outcome is the earning 1 year after treatment, lagged outcome is the earning 1 
year before treatment

• The idea: the lagged outcome 𝑌!
"#$, can be considered a proxy for 𝑌! 0  and, given it is 

observed before the treatment, it is unaffected by the treatment

• By definition, the lagged outcome is also a pre-treatment covariate
• Define 𝑿!% = 𝑿!\𝑌!

"#$, we test for the independence
𝐻&: 	𝑊! ⊥ 𝑌!

"#$|	𝑿!%

• In general, negative control outcome satisfies that 𝑌!
"#$ 0 ≡ 𝑌!

"#$ 1 , so we always 
observe its potential outcomes

• If we do not reject 𝐻&, it suggests that the unconfoundedness assumption is plausible.



The 
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The Imbens-Rubin-Sacerdote lottery data

Worse balance 
as no previous 
earnings are 
controlled



Negative control treatment (pseudo-treatment) 
• One common case of negative control treatment is when there are multiple control 

groups
• Suppose we have two control groups and one treatment group 𝐺! ∈ {𝑐', 𝑐(, 𝑡} [e.g., 

ineligibles, eligible nonparticipants and participants]

• We test for 



Define pseudo-treatment for the lottery data
• One option is to have a comparison control group, of individuals who did not play the 

lottery at all
• Then we can compare between the “losers” and non-lottery players
• This comparison group is good because “losers” and non-lottery players can be 

substantially different due to various reasons (so they may share the same unmeasured 
confounders with that between “losers” and “winners”)

• However, we do not have such data

• Here, we split the winners into two subgroups
• Median yearly prize for the winners is $31,800
• We treat the winners with yearly prize less than $30,000 as the other group of control
• Treat the winners with yearly prize larger than $30,000 as the treated group



Pseudo-treatment analysis for the lottery data



Sensitivity analysis

• Most often, validity of unconfoundedness can not be easily checked. Alternatively, one 
should check sensitivity of a causal analysis to unconfoundedness 

• Sensitivity analysis aims at assessing the bias of causal effect estimates when the 
unconfoundedness assumption is assumed to fail in some specific and meaningful ways 

• Sensitivity is different from testing – unconfoundedness is intrinsically non-testable, more 
of a “insurance” check 

• Sensitivity analysis in causal inference dates back to the Hill-Fisher debate on causation 
between smoking and lung cancer, and first formalized in Cornfield (1959, JNCI)



Bounds under no assumptions

• Consider a simple case where: 1. no covariates; 2. binary outcome
• We are interested in the ATE

𝜇),' = 𝔼 𝑌! 1 𝑊! = 1
𝜇),& = 𝔼 𝑌! 1 𝑊! = 0

𝜇+,' = 𝔼 𝑌! 0 𝑊! = 1
𝜇+,& = 𝔼 𝑌! 0 𝑊! = 0

𝑝 = 𝑃(𝑊! = 1)

Identifiable 
from 

observed 
data

Bound the unknown 𝜇),& and 𝜇+,' 
by [0, 1] as the outcome is binary



Bounds under no assumptions

• So we get the bounds
𝜇" ∈ 𝑝 * 𝜇",$, 𝑝 * 𝜇",$ + 1 − 𝑝
𝜇% ∈ 1 − 𝑝 * 𝜇%,&, 1 − 𝑝 * 𝜇%,& + 𝑝

• The the bound of ATE 𝜏 = 𝜏'( = 𝜇" − 𝜇% is
𝜏 ∈ 𝑝 * 𝜇",$ − 1 − 𝑝 * 𝜇%,& − 𝑝, 𝑝 * 𝜇",$ + 1 − 𝑝 − 1 − 𝑝 * 𝜇%,&

• Unfortunately, because we don’t have any assumptions at all, this bound is not 
very informative: 
we can easily show that 𝜏)((*+ − 𝜏,-.*+ ≡ 1, so the bound always covers 0.



Result on the lottery data

• Binary outcome: whether the earning after treatment is positive or not

• Estimated quantities: �̂� = /!
/
= 0.4675, �̂�",$ = 7𝑌"012 = 0.4106 and �̂�%,& = 7𝑌%012 =

0.5349 

• Plug in these quantities into our bound:
𝜏 ∈ −0.56, 0.44

• The two-sample difference estimate: 7𝑌"012 − 7𝑌%012 = −0.134



Sensitivity analysis bound: a more useful example

The smoking on lung cancer effect example (Cornfield et al. 1959 JNCI)

• Fisher argued the association between smoking and lung cancer may be due to a common 
gene that causes both

• Cornfield showed that if Fisher is right, we have 𝑅𝑅,- ≥ 𝑅𝑅,. ≈ 9
• Such a genetic confounder is too strong to be realistic

• Thus, smoking should have a causal effect on lung cancer
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Unmeasured 
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Lung cancerSmoking

𝑅𝑅!" =
𝑃 𝑌# = 1 𝑊# = 1
𝑃 𝑌# = 1 𝑊# = 0

𝑅𝑅!$ =
𝑃 𝑈# = 1 𝑊# = 1
𝑃 𝑈# = 1 𝑊# = 0



Sensitivity analysis bound: a more useful example

• Here, 𝑌!, 𝑈! and 𝑊! are all binary variables
• Define 

𝑝& = 𝑃 𝑈! = 1 𝑊! = 0 , 𝑝' = 𝑃 𝑈! = 1 𝑊! = 1
• If there is no causal effect of smoking on lung cancer, then

𝑃 𝑌! = 1 𝑊! = 0,𝑈! = 0 = 𝑃 𝑌! = 1 𝑊! = 1,𝑈! = 0 = 𝑟&,	
𝑃 𝑌! = 1 𝑊! = 0,𝑈! = 1 = 𝑃 𝑌! = 1 𝑊! = 1,𝑈! = 1 = 𝑟'	

• Then we have 

𝑅𝑅/. =
𝑃 𝑌! = 1 𝑊! = 1
𝑃 𝑌! = 1 𝑊! = 0 =

𝑟& 1 − 𝑝' + 𝑟'𝑝'
𝑟& 1 − 𝑝& + 𝑟'𝑝&

• Let 𝑝' ≥ 𝑝&, then because we observe 𝑅𝑅/. > 1, then (from some math)

𝑅𝑅,. =
𝑟& 1 − 𝑝' + 𝑟'𝑝'
𝑟& 1 − 𝑝& + 𝑟'𝑝&

≤
𝑝'
𝑝&
= 𝑅𝑅,-


