Causal Inference Methods
and Case Studies

STAT24630
Jingshu Wang



Lecture 16

Topic: Assessing unconfoundedness, sensitivity analysis

* Assessing unconfoundedness

* Negative control outcome

* Negative control treatment
e Sensitivity analysis

* Bound under no assumptions

* Bound for the smoking example



Unconfoundedness and balance

* Unconfoundedness property: W; L (Yi(O),Yi(l)) | X;
* This is an untestable assumption: we can never test for the unconfoundedness property as
it is an assumption on the partially unmeasured potential outcomes

* We assess balancing of covariates and test for W; L X;| e(X;)
 What we really care about is the balance of potential outcomes:
Wi L (Y:(0), (1)) | e(Xy)
within strata of observed covariates, potential outcomes corresponding to both
treatment conditions need to be balanced between groups

* Covariate balancing is a necessary, but not sufficient condition, especially when there are
unmeasured confounding pre-treatment covariates



Assessing unconfoundedness

 We can not test for unconfoundedness but we can assess the credibility of the
unconfoundedness assumption indirectly

 Three approaches
* Negative control outcome: choose proxy of the real outcome that
1. Share a similar set of possible unmeasured confounding variables with the real
outcome
2. We know a priori that the treatment have zero causal effect on the proxy
 Negative control treatment: choose new “treatment” that
1. Share a similar set of possible unmeasured confounding variables with the real
treatment
2. We know a priori that the new “treatment” has zero causal effect on the outcome
* Assess robustness of the ATE estimation given different sets of pre-treatment covariates
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Negative control outcome (pseudo-outcome)

One common way to find a good proxy of the outcome is the lagged outcome
 E.x., outcome is the earning 1 year after treatment, lagged outcome is the earning 1
year before treatment

The idea: the lagged outcome Yila‘g, can be considered a proxy for Y;(0) and, given it is
observed before the treatment, it is unaffected by the treatment

By definition, the lagged outcome is also a pre-treatment covariate
* Define X} = Xl-\Yl.lag, we test for the independence
Ho: W; L Y/*| X7

In general, negative control outcome satisfies that Yila‘g (0) = Yila‘g(l), so we always
observe its potential outcomes

If we do not reject H), it suggests that the unconfoundedness assumption is plausible.



The
Imbens-
Rubin-
Sacerdote
lottery
data

Table 21.1. Summary Statistics for Selected Lottery Sample for the IRS Lottery Data

Variable Label All Non-Winners  Winners
(N =496) (Nt =259) (N =237) Nor
Mean (S.D.) Mean Mean [t-Stat] Dif
Year Won X7 6.23 (1.18) 6.38 6.06 —-3.0 -0.27
Tickets Bought (X5) 333 (2.86) 2.19 4.57 9.9 0.90
Age (X3) 50.22 (13.68) 53.21 46.95 —-52 —-0.47
Male (X4) 0.63 (0.48) 0.67 0.58 -2.1 -0.19
Years of Schooling (X5) 13.73  (2.20) 14.43 12.97 -7.8 —=0.70
Working Then (X6) 0.78 (0.41) 0.77 0.80 0.9 0.08
Earnings Year -6 (Y_¢) 13.84 (13.36) 15.56 11.97 -3.0 -0.27
Earnings Year -5 (Y_5) 14.12 (13.76) 15.96 12.12 -3.2 —-0.28
Earnings Year -4 (Y_q) 14.21 (14.06) 16.20 12.04 -34 -0.30
Earnings Year -3 (Y_3) 14.80 (14.77) 16.62 12.82 -29 -0.26
Earnings Year -2 (Y_») 15.62 (15.27) 17.58 13.48 -3.0 -0.27
Earnings Year -1 Y_1) 16.31 (15.70) 18.00 14.47 -2.5 -0.23
Pos Earnings Year -6 (Y_g>0) 0.69 (0.46) 0.69 0.70 0.3 0.03
Pos Earnings Year -5 (Y_5>0) 0.71 (0.45) 0.68 0.74 1.6 0.14
Pos Earnings Year -4 (Y_4>0) 071 (045) 0.69 0.73 1.1 0.10
Pos Earnings Year -3 (Y_3>0) 0.70 (0.46) 0.68 0.73 1.4 0.13
Pos Earnings Year -2 ((Y_»,>0) 0.71 (0.46) 0.68 0.74 1.6 0.15
Pos Earnings Year -1 (Y_;>0) 071 (0.45) 0.69 0.74 1.2 0.10




The Imbens-Rubin-Sacerdote lottery data

Pseudo- Remaining Selected Est (s.e.)
Outcome Covariates Covariates
Y_1 X1,...,.X6,Y_6,...,Y_2,Y >0,...,Y_2>0 X>,X5,X6,Y_» —0.53 (0.58)
Y_(+Y_
—=l5—=2 X1,....X6, Y 6,..., Y 3,Y_>0,...,Y_3>0 X5,X5,X6,Y_3 —1.16 (0.71)
Y _1+Y_H»+Y_
1 32 3 X15...,X6,Y_6,Y_5,Y_4,Y >0,Y_5>0,Y_4>0 Xp,X5,X6,Y_4 —0.39 (0.77)
Y_ 1+..4+Y_
1 7 4 X1,...,X6,Y_6,Y_5,Y_>0,Y_5>0 X>,X5,X6,Y_5 —0.56 (0.89)
Y _1+..+Y_5
X1,....X6, Y _¢,Y_¢>0 Xr,X5,X¢,Y_¢ —0.49 (0.87
5 1 6> 5—6>7-6 2:45:426° 76 0.87) Worse balance
Y_(+.+Y_ as no previous
L -6 X1,...,Xg X5,X5,Xg ~ —2.56 (1.55) «——

earnings are

Actual outcome Y X1,...,.X6,Y_6,...,Y_1,Y_6>0,...,Y_1>0 X>,X5,X6,Y_1 —5.74 (1.14) controlled




Negative control treatment (pseudo-treatment)

 One common case of negative control treatment is when there are multiple control
groups

* Suppose we have two control groups and one treatment group G; € {c4, ¢, t} [e.8.,
ineligibles, eligible nonparticipants and participants]

~_JO if G; = ¢y, ¢,
Wl_{l if G; =1t.

e We test for

Gi L Y(0) | X;,Gi € fe1,¢2)
which is equivalent to

G; L Y| X;,Gi € {c1,ca).




Define pseudo-treatment for the lottery data

 One option is to have a comparison control group, of individuals who did not play the
lottery at all

« Then we can compare between the “losers” and non-lottery players

* This comparison group is good because “losers” and non-lottery players can be
substantially different due to various reasons (so they may share the same unmeasured
confounders with that between “losers” and “winners”)

* However, we do not have such data

* Here, we split the winners into two subgroups
* Median yearly prize for the winners is $31,800
* We treat the winners with yearly prize less than $30,000 as the other group of control
* Treat the winners with yearly prize larger than $30,000 as the treated group



Pseudo-treatment analysis for the lottery data

Table 21.4. Estimates of Average Difference in Qutcomes for Controls
and Small Winners (less than $30,000) for the IRS Lottery Data

Outcome Subpopulation  Est (s.€))
Y; All —0.82 (1.37)
1y o Y 1 = —0.02  (0.05)
1y _o Y, _1>0 0.07  (0.05)
Y; Y; 1= —1.18  (1.10)

Y; Y;i_1>0  —016 (0.69)



Sensitivity analysis
 Most often, validity of unconfoundedness can not be easily checked. Alternatively, one

should check sensitivity of a causal analysis to unconfoundedness

* Sensitivity analysis aims at assessing the bias of causal effect estimates when the
unconfoundedness assumption is assumed to fail in some specific and meaningful ways

e Sensitivity is different from testing — unconfoundedness is intrinsically non-testable, more
of a “insurance” check

* Sensitivity analysis in causal inference dates back to the Hill-Fisher debate on causation
between smoking and lung cancer, and first formalized in Cornfield (1959, JNCI)



Bounds under no assumptions

* Consider a simple case where: 1. no covariates; 2. binary outcome

* We are interested in the ATE
Tsp = Ut — He
where
pue=EYi(DI=p- per+ A —=p)- peo,

and

pe =E[Y;(0)]=p- el + U —p)- uco.

Her = E[Y;(D|W; = 1]
e = E[Y;(DIW; = 0]

|Identifiable
He = E[Y;(0)|W; = 1] from

observed

Heo = E[G;(0)[W; =0]

p=PW;=1)

Bound the unknown p; ¢ and . 4
by [0, 1] as the outcome is binary



Bounds under no assumptions

 So we get the bounds

ue € [p - e v per + (1 —p)|
Ue € [(1 - p) "HUe,0 (1 - p) "Uco + p]

* The the bound of ATE T = Tg), = lUy — U iS
T€p 1 — (A=) theo—D0 Hea+ (A —p) = (1 —p) - picy]

* Unfortunately, because we don’t have any assumptions at all, this bound is not
very informative:

we can easily show that T¥PPe" — glower = 1 o the bound always covers 0.



Result on the |lottery data

* Binary outcome: whether the earning after treatment is positive or not

* Estimated quantities: p = % = 0.4675, i1 = ¥°P5 = 0.4106 and fi. o = V,2P5 =
0.5349

* Plugin these quantities into our bound:
T € [—0.56,0.44]

* The two-sample difference estimate: Y25 — Y°bS = —0.134



Sensitivity analysis bound: a more useful example

The smoking on lung cancer effect example (Cornfield et al. 1959 INCI)

Fisher argued the association between smoking and lung cancer may be due to a common
gene that causes both

Cornfield showed that if Fisher is right, we have RRy,; = RRyy = 9
Such a genetic confounder is too strong to be realistic

Thus, smoking should have a causal effect on lung cancer _PlY; =1|W; =1]
RRyy =
P i — 1|Wl == 0]
Unmeasured P[U;, = 1|W, = 1]
U | genetic confounder RRyy = L L
PlU; = 1|w; = 0]
W Y

Smoking Lung cancer



Sensitivity analysis bound: a more useful example

Here, Y;, U; and W; are all binary variables
Define
po = PlU; =1{W; =0], p,=PlU; =1|W; =1]
If there is no causal effect of smoking on lung cancer, then
PlY; = 1|W; = 0,U; = 0] = P[Y; = 1{[W; = 1,U; = 0] = 7,,
P[Yl=1|Wl=O,Ul=1] =P[Yl=1|Wl=1'Ul=1] =1

Then we have
Pl =1W; =1] 7r(1—p1) + 11y
PlY; = 1{W; = 0] 1y(1 —pg) + m1pg

Let p; = py, then because we observe RR,y > 1, then (from some math)
ro(1 —p1) + 1ip1 P
ro(1 —po) + 11Po ~ Do

RRyy = = RRyy



