Causal Inference Methods and Case Studies

STAT24630
Jingshu Wang

Lecture 4

Topic: Classical randomized experiments

- Computing Fisher's exact p -value and Cl with R
- A case study using Fisher's sharp null and exact p-values

Case study: the California alphabet lottery

[Randomization inference with natural experiments: An analysis of ballot effects in the 2003 California recall election. Journal of the American statistical association, 2006]

Problem background

- In the 2000 U.S. national election, George W. Bush became President by winning 537 more votes than AI Gore in Florida.
- This unusually close election result served as a reminder that the manner in which elections are administered can change outcomes.
- This paper studied the causal effect of the page placement of candidates in the 2003 California recall election
- dataset was collected by The New York Times in 2003 (not publicly available)

Case study: the California alphabet lottery

[Randomization inference with natural experiments: An analysis of ballot effects in the 2003 California recall election. Journal of the American statistical association, 2006]

Problem background
 - Recall results
 https://en.wikipedia.org/wiki 2003 California gubernator ial_recall_election

Vote on recall		
Shall Gray Davis be recalled (removed) from the office of Governor?		
Results		
Response	Votes	\%
\checkmark Yes	4,976,274	55.39\%
X No	4,007,783	44.61\%
Valid votes	8,984,057	95.44\%
Invalid or blank votes	429,431	4.56\%
Total votes	9,413,488	100.00\%
Registered voters/turnout	15,380,536	61.2\%

The randomization-rotation procedure

- Since 1975, California law has mandated that the Secretary of State draw a random alphabet for each election to determine the order of candidates for the first assembly district [California Election Code § 13112 (2003)].
- California law further requires that the candidate order be systematically rotated throughout the remaining assembly districts.
- The procedure

1. Randomize alphabet
2. Sort candidates by randomized alphabet
3. Rotate the candidate order from the first district

For the 2003 recall election, the actual randomized alphabet was
R W Q O J M V A H B S G Z X N TCIEKUPDYFL

- The ballot order in the first assembly district was determined, starting from Robinson, Roscoe, Ramirez, and so on and proceeding to Lewis and Leonard.
- This candidate order was then rotated throughout the remaining assembly districts.

The randomization-rotation procedure

Challenges analyzing data with the randomization

 procedure- Randomization is not done on each candidate
- The alphabets are randomized, but the 80 assembly districts order are not randomized
- an unprecedented total of 135 candidates, from Hollywood actor Arnold Schwarzenegger to child television star Gary Coleman
- Each of the 58 counties uses a different ballot format with varying numbers of pages, leading to 121 county-district combinations of ballot formats
- interactions across candidates

No complete randomization of page placement across candidates nor across districts

Set up the analysis framework

- Analyze the causal effect of page placement for each of the 135 candidates separately
- Each of 121 county-district combination is a unit: $Y_{i}(0)$ and $Y_{i}(1)$ for a district i and a particular candidate
- Treatment: $T_{i}=1$ if candidate is placed on the first page, $T_{i}=0$ otherwise
- Sharp null for a particular candidate: $H_{0}: Y_{i}(0) \equiv Y_{i}(1)$ for all $i=1, \cdots, 121$
- Test statistics:
- Sample average treatment effect $\quad W^{\mathrm{D}}(\mathbf{T})=\frac{\sum_{i=1}^{121} T_{i} y_{i}}{N_{1}}-\frac{\sum_{i=1}^{121}\left(1-T_{i}\right) y_{i}}{N_{0}}$

$$
\begin{equation*}
W^{\mathrm{L}}(\mathbf{T})=\left(\mathbf{T}^{\top} \mathbf{M} \mathbf{T}\right)^{-1} \mathbf{T}^{\top} \mathbf{M y}, \tag{4}
\end{equation*}
$$

where $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{121}\right), \mathbf{M}=\mathbf{I}-\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}$, and \mathbf{X} is the matrix of the observed pretreatment covariates.

Set up the analysis framework

Implicit assumptions

- Assumption 1 (No interference among units) The potential outcomes of one unit do not depend on the treatment of other units.
- potential vote shares of a candidate in one district do not depend on the same candidate's ballot placement in another district.
- Voters usually do not see ballots of other districts and hence are unlikely to be affected by such ballots.
- focus on the estimation of a separate causal effect for each candidate
- Assumption 2 (Known random assignment). Treatment is randomly assigned by a known mechanism. Formally, $p\left(T_{i} \mid Y_{i}(0), Y_{i}(1)\right)=p\left(T_{i}\right)$ is known for each i.
- Assumes county page formats are independent of the randomized alphabet
- Number of possible ballot pages is driven primarily by the type of voting technology, which is exogenous to the randomization

Distribution of Exact p-values across Candidates

Candidate

- Authors computed the one-sided p-values
- Reference distribution obtained via Monte Carlo
- Candidates ranked based on their p-values
- If the sharp null is true, these p-values should all be uniformly distributed

Confidence intervals under the constant additive effect model

- For each candidate, we assume $Y_{i}(0)-Y_{i}(1) \equiv \tau_{0}$ across all republican / democratic districts
- We construct confidence intervals by inverting the Fisher's randomization tests at a range of τ_{0} values

Page Effect on Major Candidates

Page Effect on Minor Candidates

