Causal Inference Methods
and Case Studies

STAT24630
Jingshu Wang



Lecture 5

Topic: Classical randomized experiments

* Neyman’s repeated sampling approach
* Motivation
* Variance calculation
* Cl and hypothesis testing

* Fisher VS Neyman



Motivation

* Limitations of the Fisher’s randomization inference
* Do not allow heterogeneity of causal effects across individuals
* Do not have inference for the population

* Neyman’s approach
* Allow heterogeneity of causal effects across individuals
* Focus on estimation and inference for the average treatment effect: either just for the
N samples or for the whole population (PATE)
 Repeated sampling: sampling generated b drawing from both the population units, and
from the randomization distribution of assignment vector W
* Only provide asymptotic approximation for large N instead of the exact inference



Example: Duflo-Hanna-Ryan teacher-incentive
experiment

Conducted in rural India, designed to study the effect of financial incentives on teacher

performance
In total N = 107 single-teacher schools, 53 schools are randomly chosen and are given a salary

that’s tied to their attendance
One outcome: open (proportion of times the school is open during a random visit)

Table 6.1. Summary Statistics for Duflo-Hanna-Ryan Teacher-Incentive Observed Data

Variable Control (N; = 54) Treated (Nt = 53)

Average (S.D.) Average (S.D.) Min Max

Pre-treatment pctprewritten 0.19 (0.19) 0.16 (0.17) 0.00 0.67
Post-treatment  open 0.58 (0.19) 0.80 (0.13) 0.00 1.00
pctpostwritten 0.47 (0.19) 0.52 (0.23) 0.05 0.92
written 0.92 (0.45) 1.09 (0.42) 0.07 2.22

written all 0.46 (0.32) 0.60 (0.39) 0.04 143




Example: Duflo-Hanna-Ryan teacher-incentive
experiment

Standard two-sample test: |
tdif = 0.80 — 0.58 = 0.22

0.192 0.132
s.e.= + ~ 0.032

54 53
95% CI:[0.22 —1.96 % 0.032,0.22 + 1.96 * 0.032]

Table 6.1. Summary Statistics for Duflo-Hanna-Ryan Teacher-Incentive Observed Data

Variable Control (N; = 54) Treated (Nt = 53)

Average (S.D.) Average (S.D.) Min Max

Pre-treatment pctprewritten 0.19 (0.19) 0.16 (0.17) 0.00 0.67
Post-treatment  open 0.58 (0.19) 0.80 (0.13) 0.00 1.00

e This calculation ignores the randomization procedure of the treatment assignment
e Can we justify this standard difference-in-means analysis from the randomization perspective?



Estimation of the sample average treatment effect

* Causal estimand: SATE = 14, = % N {Y;(1) —Y;(0)} for the sampled N units

 Difference-in-means estimator:

~dif —o0Dbs —o0Dbs
z_dlf — Y L Y
where Y, - Z Y?™  and _?b Z y oS
IW =0 IW_l

 Under complete randomization (random W) and treat the potential outcomes as fixed (fixed
Y(0) ={Y;(0),i=1,---,N}and Y(1) = {Y-(l) i =1,---,N}), this estimator is unbiased
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First, we can re-write 79/;
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Calculate the variance of the estimator
Causal estimand: SATE = 74, = % N {Y;(1) — Y;(0)} for the sampled N units

i -in- i - ~dif —obs ~—0bs
Difference-in-means estimator: fdn‘ _ Yt . Yc
Under complete randomization and fixed potential outcomes, we can also calculate the

variance of T4if (if you are interested in the proof see Appendix A of Chapter 6)
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where 7 . - q [ N o Sample variance
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Conservative approximation of the variance of the

estimator

Wy [290]¥(0), ¥ (1)] = 3£ 4 5 _ Set
w ’ N, Ny N
where ; & iy

T 2 2 N T 2
. (Yi(0) —Y(0))", and e (Yi(1) = Y(1))
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Estimate S and S/ by sample variance of observed outcomes

b vob b vob
52 Zi:Wi=O(YiO ¥ — YCO 5)2 2 Zi:Wi=1(Yio v — Yto S)Z
C

N, — 1 S = N, — 1
SZ is not identifiable
* No heterogeneity of treatment effects across individuals S =
* Ingeneral, S% > 0 though the exact value is unknown

Sample variance
of ¥;(0) and Y;(1)

Sample variance
of the unit-level
treatment effects



Conservative approximation of the variance of the
estimator

T 52 SZ SZ
o Vi [79|Y(0),Y(1)] = N"‘ + Ntt — I\C,t
C

where N { ~_ Sample variance
§2 = Z (Yi(0) — Y(0))*, and S? = o Z(Y,-(l) —Y(1))"  of ¥(0) and ¥;(1)
7 | /:rz ) ) 7 i—1
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* A conservative estimator of Vary, [‘fdif|Y(O), Y(1)]

Vo, [791)Y(0), Y(1)] < 5 + 2 = E,, [ St |Y(0) Y(l)]
NC Nt

Neyman’s estimator of the variance,
same as s.e. on slide 5



Estimation of the population average treatment effect

Causal estimand: PATE = 75, = IE(Yl-(l) — Yl-(O)) = [E(SATE) = E(7)
We assume that (Y;(0), Y;(1)) are jointly i.i.d samples from a super population with variance

o? and g?

We still use difference-in-means estimator:
~dif —o0bs —o0bs
z_dlf — Yt L YC

4 is still unbiased for 7, [E(fdif) = E(Ey, [t4Y(0), Y(1)]) = E(tg) = Tsp

The variance of £4if (variance decomposition formula):
 Check Wikipedia if you do not know the variance decomposition formula
https://en.wikipedia.org/wiki/Law_of total variance

v(zdit) = E(Vy, [29Y(0), Y (D)]) + V(Ey [£9]Y(0), Y (1)])


https://en.wikipedia.org/wiki/Law_of_total_variance

Variance calculation for the population

.« Vi [ty (0), Y (D]

v(zdif) = E(Vy, [29Y(0), Y(D]) + V(Ey [£9]Y(0), Y (1)])
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+ V(Ey [£41¥(0), Y(1]) = V(zg) = V (5 I {%(1) - %(0)}) = 2 V(%(D) — ¥;(0))

2

] 2
e So VW, (£dif) =2 4% exactly the same as in two-sample testing
w N,

Nt
In two-sample testing, we assume that observed outcome Y; are i.i.d. in the treatment

group and Y; are i.i.d. in the control group
Under complete randomization, Y; = Y;(W;) are not i.i.d. even with the treatment/control

group because W; are negatively correlated across i



Construct confidence intervals for g5 or T,

We have the same estimator £9f and the same variance approximation of pdif

2 2
s S¢S

V(2dif) = =+ =

() =5+

no matter we are interested about SATE T¢g or PATE Tgy,

When N is large enough, we can approximate the distribution of pdif by a normal distribution

Then the 95% Cl for either T¢g OF Tgy, IS

[£9if — 1,96,/ V(£4dif) £dif — 1 96x./V(£dif)]

same as what we had earlier



ypothesis testing for T¢g or Tgy,

We have the same estimator £9f and the same variance approximation of pdif

2 2
s S Sf
V(zdif) = —+
() =5+
no matter we are interested about SATE T¢g or PATE Tgy,

When N is large enough, we can approximate the distribution of pdif by a normal distribution

When can test for the null hypothesis Hy: Tgg = 0 or Hy: Tsp = 0

:L\.dif

The t-statistics: t =
V(zdif

Under either Hy and when N is large, we have t approximately follows a N(0, 1) distribution
Two-sided p-value: 2(1 — ¢ (|t]))

i



Application to the Duflo-Hanna-Ryan data

Table 6.1. Summary Statistics for Duflo-Hanna-Ryan Teacher-Incentive Observed Data

Variable Control (N. = 54) Treated (Nt = 53)

Average  (S.D.)  Average (S.D.) Min Max

Pre-treatment pctprewritten 0.19 (0.19) 0.16 (0.17) 0.00 0.67
Post-treatment  open 0.58 (0.19) 0.80 (0.13) 0.00 1.00
pctpostwritten 0.47 (0.19) 0.52 (0.23) 0.05 0.92
written 0.92 (0.45) 1.09 (0.42) 0.07 2.22
written_all 0.46 (0.32) 0.60 (0.39) 0.04 143

Confidence interval for each of the four outcomes:

—

T (s.e.) 05% C.I.
0.22 (0.03) (0.15,0.28)
0.05 (0.04) (—0.03,0.13)
0.17 (0.08) (0.00,0.34)

0.14 (0.07) (0.00,0.28)




Application to the Duflo-Hanna-Ryan data

Table 6.1. Summary Statistics for Duflo-Hanna-Ryan Teacher-Incentive Observed Data

Variable Control (N. = 54) Treated (Nt = 53)

Average  (S.D.)  Average (S.D.) Min Max

Pre-treatment pctprewritten 0.19 (0.19) 0.16 (0.17) 0.00 0.67
Post-treatment  open 0.58 (0.19) 0.80 (0.13) 0.00 1.00
pctpostwritten 0.47 (0.19) 0.52 (0.23) 0.05 0.92
written 0.92 (0.45) 1.09 (0.42) 0.07 2.22
written_all 0.46 (0.32) 0.60 (0.39) 0.04 143

Analysis on two different subgroups: within each subgroup we still have complete randomization of assignments

Variable pctpre =0 pctprewritten > 0 Difference
(N = 40) (N = 67)

¢ (s.e) 95%Cl % (s.e) 95%Cl  EST (s.e.) 95%C.L

open 0.23 (0.05) (0.14,0.32) 0.21 (0.04) (0.13,0.29) 0.02 (0.06) (—=0.10,0.14)
pctpost —0.004 (0.06) (—0.16,0.07) 0.11 (0.05) (0.01,0.21) —0.15 (0.08) (—0.31,0.00)
written

written 0.20 (0.10) (0.00,0.40) 0.18 (0.10) (—0.03,0.38) 0.03 (0.15) (—0.26,0.31)
written 0.04 (0.07) (—=0.10,0.19) 0.22 (0.09) (0.04,0.40) —0.18 (0.12) (—0.41,0.05)
_all




Fisher v.s. Neyman

Like Fisher, Neyman proposed randomization-based inference

Unlike Fisher,
* estimands are average treatment effects
* heterogenous treatment effects are allowed
e population as well as sample inference is possible
* asymptotic approximation is required for inference

Fisher’s approach can easily be applied to deal with any randomization mechanism in
an experiment, but it can be much harder for Neyman’s approach



