Causal Inference Methods and Case Studies

STAT24630

Jingshu Wang

Lecture 5

Topic: Classical randomized experiments

- Neyman's repeated sampling approach
 - Motivation
 - Variance calculation
 - Cl and hypothesis testing
 - Fisher VS Neyman

Motivation

- Limitations of the Fisher's randomization inference
 - Do not allow heterogeneity of causal effects across individuals
 - Do not have inference for the population
- Neyman's approach
 - Allow heterogeneity of causal effects across individuals
 - Focus on estimation and inference for the average treatment effect: either just for the *N* samples or for the whole population (PATE)
 - Repeated sampling: sampling generated b drawing from both the population units, and from the randomization distribution of assignment vector $m{W}$
 - Only provide asymptotic approximation for large N instead of the exact inference

Example: Duflo-Hanna-Ryan teacher-incentive experiment

- Conducted in rural India, designed to study the effect of financial incentives on teacher performance
- In total N = 107 single-teacher schools, 53 schools are randomly chosen and are given a salary that's tied to their attendance
- One outcome: open (proportion of times the school is open during a random visit)

Table 6.1. Summary Statistics for Duflo-Hanna-Ryan Teacher-Incentive Observed Data

	Variable	Control ($N_c = 54$)		Treated (1			
		Average	(S.D.)	Average	(S.D.)	Min	Max
Pre-treatment	pctprewritten	0.19	(0.19)	0.16	(0.17)	0.00	0.67
Post-treatment	open	0.58	(0.19)	0.80	(0.13)	0.00	1.00
	pctpostwritten	0.47	(0.19)	0.52	(0.23)	0.05	0.92
	written	0.92	(0.45)	1.09	(0.42)	0.07	2.22
	written_all	0.46	(0.32)	0.60	(0.39)	0.04	1.43

Example: Duflo-Hanna-Ryan teacher-incentive experiment

Standard two-sample test:

$$\hat{\tau}^{\text{dif}} = 0.80 - 0.58 = 0.22$$

$$s. e. = \sqrt{\frac{0.19^2}{54} + \frac{0.13^2}{53}} \approx 0.032$$

$$95\% CI: [0.22 - 1.96 * 0.032, 0.22 + 1.96 * 0.032]$$

Table 6.1. Summary Statistics for Duflo-Hanna-Ryan Teacher-Incentive Observed Data

	Variable	Control (/	$V_c = 54$)	Treated ($N_t = 53$)			
		Average	(S.D.)	Average	(S.D.)	Min	Max
Pre-treatment	pctprewritten	0.19	(0.19)	0.16	(0.17)	0.00	0.67
Post-treatment	open	0.58	(0.19)	0.80	(0.13)	0.00	1.00

- This calculation ignores the randomization procedure of the treatment assignment
- Can we justify this standard difference-in-means analysis from the randomization perspective?

Estimation of the sample average treatment effect

- Causal estimand: SATE = $\tau_{fs} = \frac{1}{N} \sum_{i=1}^{N} \{Y_i(1) Y_i(0)\}$ for the sampled N units
- Difference-in-means estimator:

$$\hat{\tau}^{\text{dif}} = \overline{Y}_{t}^{\text{obs}} - \overline{Y}_{c}^{\text{obs}}$$

where
$$\overline{Y}_{c}^{obs} = \frac{1}{N_{c}} \sum_{i:W_{i}=0} Y_{i}^{obs}$$
 and $\overline{Y}_{t}^{obs} = \frac{1}{N_{t}} \sum_{i:W_{i}=1} Y_{i}^{obs}$

• Under complete randomization (random W) and treat the potential outcomes as fixed (fixed $Y(0) = \{Y_i(0), i = 1, \dots, N\}$ and $Y(1) = \{Y_i(1), i = 1, \dots, N\}$), this estimator is unbiased

$$\mathbb{E}_{W}\left[\hat{\tau}^{\text{dif}}\middle|\mathbf{Y}(0),\mathbf{Y}(1)\right] = \frac{1}{N}\sum_{i=1}^{N}\left(\frac{\mathbb{E}_{W}[W_{i}]\cdot Y_{i}(1)}{N_{t}/N} - \frac{\mathbb{E}_{W}[1-W_{i}])\cdot Y_{i}(0)}{N_{c}/N}\right)$$
$$= \frac{1}{N}\sum_{i=1}^{N}\left(Y_{i}(1) - Y_{i}(0)\right) = \tau_{\text{fs}}.$$

First, we can re-write $\hat{\tau}^{dif}$:

$$\begin{split} \hat{\tau}^{dif} &= \overline{Y_t}^{obs} - \overline{Y_c}^{obs} \\ &= \frac{1}{N_t} \sum_{i:W_i = 1} Y_i^{obs} - \frac{1}{N_c} \sum_{i:W_i = 0} Y_i^{obs} \\ &= \frac{1}{N_t} \sum_{i:W_i = 1} W_i Y_i(1) - \frac{1}{N_c} \sum_{i:W_i = 0} (1 - W_i) Y_i(0) \\ &= \frac{1}{N} \sum_{i = 1}^{N} \left(\frac{N}{N_t} W_i Y_i(1) - \frac{N}{N_c} (1 - W_i) Y_i(0) \right) \end{split}$$

And now we can take an expectation:

$$E(\hat{\tau}^{dif}) = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{N}{N_t} E(W_i) Y_i(1) - \frac{N}{N_c} E(1 - W_i) Y_i(0) \right)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \left(\frac{N}{N_t} \frac{N_t}{N} Y_i(1) - \frac{N}{N_c} \frac{N_c}{N} Y_i(0) \right)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \left(Y_i(1) - Y_i(0) \right)$$

$$= \tau$$

Calculate the variance of the estimator

- Causal estimand: SATE = $\tau_{fs} = \frac{1}{N} \sum_{i=1}^{N} \{Y_i(1) Y_i(0)\}$ for the sampled N units
- Difference-in-means estimator: $\hat{ au}^{
 m dif} = \overline{Y}_{
 m t}^{
 m obs} \overline{Y}_{
 m c}^{
 m obs}$
- Under complete randomization and fixed potential outcomes, we can also calculate the variance of $\hat{ au}^{
 m dif}$ (if you are interested in the proof see Appendix A of Chapter 6)

$$V_{W}[\hat{\tau}^{\text{dif}}|Y(0),Y(1)] = \frac{S_{c}^{2}}{N_{c}} + \frac{S_{t}^{2}}{N_{t}} - \frac{S_{ct}^{2}}{N}$$

where

$$S_{c}^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (Y_{i}(0) - \overline{Y}(0))^{2}, \text{ and } S_{t}^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (Y_{i}(1) - \overline{Y}(1))^{2}$$

$$S_{ct}^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (Y_{i}(1) - Y_{i}(0) - (\overline{Y}(1) - \overline{Y}(0)))^{2}$$

$$= \frac{1}{N-1} \sum_{i=1}^{N} (Y_{i}(1) - Y_{i}(0) - \tau_{fs})^{2}.$$

Sample variance of $Y_i(0)$ and $Y_i(1)$

Sample variance of the unit-level treatment effects

Conservative approximation of the variance of the estimator

• $\mathbb{V}_{W}[\hat{\tau}^{\text{dif}}|Y(0),Y(1)] = \frac{S_{c}^{2}}{N_{c}} + \frac{S_{t}^{2}}{N_{t}} - \frac{S_{ct}^{2}}{N}$

where

$$S_{\rm c}^2 = \frac{1}{N-1} \sum_{i=1}^{N} (Y_i(0) - \overline{Y}(0))^2, \text{ and } S_{\rm t}^2 = \frac{1}{N-1} \sum_{i=1}^{N} (Y_i(1) - \overline{Y}(1))^2$$
 Sample variance of $Y_i(0)$ and $Y_i(1)$

$$S_{\text{ct}}^2 = \frac{1}{N-1} \sum_{i=1}^{N} (Y_i | (1) - Y_i(0) - (\overline{Y}(1) - \overline{Y}(0)))^2$$

$$= \frac{1}{N-1} \sum_{i=1}^{N} (Y_i(1) - Y_i(0) - \tau_{fs})^2.$$

Sample variance

Sample variance of the unit-level treatment effects

Estimate S_c^2 and S_t^2 by sample variance of observed outcomes

$$s_c^2 = \frac{\sum_{i:W_i=0} (Y_i^{\text{obs}} - \overline{Y}_c^{\text{obs}})^2}{N_c - 1}, s_c^2 = \frac{\sum_{i:W_i=1} (Y_i^{\text{obs}} - \overline{Y}_t^{\text{obs}})^2}{N_t - 1}$$

- S_{ct}^2 is not identifiable
 - No heterogeneity of treatment effects across individuals $S_{ct}^2 = 0$
 - In general, $S_{ct}^2 \ge 0$ though the exact value is unknown

Conservative approximation of the variance of the estimator

•
$$\mathbb{V}_{W}[\hat{\tau}^{\text{dif}}|Y(0),Y(1)] = \frac{S_{c}^{2}}{N_{c}} + \frac{S_{t}^{2}}{N_{t}} - \frac{S_{ct}^{2}}{N}$$

where

$$S_{\rm c}^2 = \frac{1}{N-1} \sum_{i=1}^N (Y_i(0) - \overline{Y}(0))^2$$
, and $S_{\rm t}^2 = \frac{1}{N-1} \sum_{i=1}^N (Y_i(1) - \overline{Y}(1))^2$

Sample variance of $Y_i(0)$ and $Y_i(1)$

$$S_{\text{ct}}^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (Y_{i}(1) - Y_{i}(0) - (\overline{Y}(1) - \overline{Y}(0)))^{2}$$
$$= \frac{1}{N-1} \sum_{i=1}^{N} (Y_{i}(1) - Y_{i}(0) - \tau_{\text{fs}})^{2}.$$

Sample variance of the unit-level treatment effects

• A conservative estimator of $\mathrm{Var}_{W}[\hat{ au}^{\mathrm{dif}}|\mathbf{Y}(0),\mathbf{Y}(1)]$

$$\mathbb{V}_{W}[\hat{\tau}^{\text{dif}}|\mathbf{Y}(0),\mathbf{Y}(1)] \leq \frac{S_{c}^{2}}{N_{c}} + \frac{S_{t}^{2}}{N_{t}} = \mathbb{E}_{W}\left[\frac{S_{c}^{2}}{N_{c}} + \frac{S_{t}^{2}}{N_{t}} | \mathbf{Y}(0),\mathbf{Y}(1)\right]$$

Neyman's estimator of the variance, same as *s.e.* on slide 5

Estimation of the population average treatment effect

- Causal estimand: $PATE = \tau_{sp} = \mathbb{E}(Y_i(1) Y_i(0)) = \mathbb{E}(SATE) = \mathbb{E}(\tau_{fs})$
- We assume that $(Y_i(0), Y_i(1))$ are jointly i.i.d samples from a super population with variance σ_c^2 and σ_s^2
- We still use difference-in-means estimator:

$$\hat{\tau}^{\text{dif}} = \overline{Y}_{t}^{\text{obs}} - \overline{Y}_{c}^{\text{obs}}$$

- $\hat{\tau}^{\mathrm{dif}}$ is still unbiased for τ_{sp} : $\mathbb{E}(\hat{\tau}^{\mathrm{dif}}) = \mathbb{E}(\mathbb{E}_W[\hat{\tau}^{\mathrm{dif}}|Y(0),Y(1)]) = \mathbb{E}(\tau_{\mathrm{fs}}) = \tau_{\mathrm{sp}}$
- The variance of $\hat{\tau}^{dif}$ (variance decomposition formula):
 - Check Wikipedia if you do not know the variance decomposition formula https://en.wikipedia.org/wiki/Law of total variance

$$\mathbb{V}(\hat{\tau}^{\mathrm{dif}}) = \mathbb{E}(\mathbb{V}_{W}[\hat{\tau}^{\mathrm{dif}}|\mathbf{Y}(0),\mathbf{Y}(1)]) + \mathbb{V}(\mathbb{E}_{W}[\hat{\tau}^{\mathrm{dif}}|\mathbf{Y}(0),\mathbf{Y}(1)])$$

Variance calculation for the population

$$\mathbb{V}(\hat{\tau}^{\mathrm{dif}}) = \mathbb{E}(\mathbb{V}_{W}[\hat{\tau}^{\mathrm{dif}}|\mathbf{Y}(0),\mathbf{Y}(1)]) + \mathbb{V}(\mathbb{E}_{W}[\hat{\tau}^{\mathrm{dif}}|\mathbf{Y}(0),\mathbf{Y}(1)])$$

•
$$\mathbb{V}_W[\hat{\tau}^{\mathrm{dif}}|\mathbf{Y}(0),\mathbf{Y}(1)] = \frac{S_c^2}{N_c} + \frac{S_t^2}{N_t} - \frac{S_{ct}^2}{N}$$
, with
$$\mathbb{E}(S_c^2) = \sigma_c^2, \mathbb{E}(S_t^2) = \sigma_t^2, \mathbb{E}(S_{ct}^2) = \mathbb{V}(Y_i(1) - Y_i(0))$$

- $\mathbb{V}(\mathbb{E}_{W}[\hat{\tau}^{\text{dif}}|Y(0),Y(1)]) = \mathbb{V}(\tau_{\text{fs}}) = \mathbb{V}(\frac{1}{N}\sum_{i=1}^{N}\{Y_{i}(1) Y_{i}(0)\}) = \frac{1}{N}\mathbb{V}(Y_{i}(1) Y_{i}(0))$
- So $\mathbb{V}_W(\hat{\tau}^{\mathrm{dif}}) = \frac{\sigma_c^2}{N_c} + \frac{\sigma_t^2}{N_t}$ exactly the same as in two-sample testing
 - In two-sample testing, we assume that observed outcome Y_i are i.i.d. in the treatment group and Y_i are i.i.d. in the control group
 - Under complete randomization, $Y_i = Y_i(W_i)$ are not i.i.d. even with the treatment/control group because W_i are negatively correlated across i

Construct confidence intervals for $au_{ m fs}$ or $au_{ m sp}$

• We have the same estimator $\hat{ au}^{
m dif}$ and the same variance approximation of $\hat{ au}^{
m dif}$

$$\widehat{\mathbb{V}}(\widehat{\tau}^{\mathrm{dif}}) = \frac{s_c^2}{N_c} + \frac{s_t^2}{N_t}$$

no matter we are interested about SATE $au_{
m fs}$ or PATE $au_{
m sp}$

- When N is large enough, we can approximate the distribution of $\hat{ au}^{
 m dif}$ by a normal distribution
- Then the 95% CI for either τ_{fs} or τ_{sp} is $[\hat{\tau}^{dif} 1.96 \times \sqrt{\widehat{\mathbb{V}}(\hat{\tau}^{dif})}, \hat{\tau}^{dif} 1.96 \times \sqrt{\widehat{\mathbb{V}}(\hat{\tau}^{dif})}]$ same as what we had earlier

Hypothesis testing for $au_{ m fs}$ or $au_{ m sp}$

• We have the same estimator $\hat{ au}^{
m dif}$ and the same variance approximation of $\hat{ au}^{
m dif}$

$$\widehat{\mathbb{V}}(\widehat{\tau}^{\text{dif}}) = \frac{s_c^2}{N_c} + \frac{s_t^2}{N_t}$$

no matter we are interested about SATE au_{fs} or PATE au_{sp}

- When N is large enough, we can approximate the distribution of $\hat{ au}^{
 m dif}$ by a normal distribution
- When can test for the null hypothesis H_0 : $au_{fs}=0$ or H_0 : $au_{sp}=0$
- The t-statistics: $t = \frac{\hat{\tau}^{\text{dif}}}{\sqrt{\hat{\mathbb{V}}(\hat{\tau}^{\text{dif}})}}$
- Under either H_0 and when N is large, we have t approximately follows a N(0,1) distribution
- Two-sided p-value: $2(1 \phi(|t|))$

Application to the Duflo-Hanna-Ryan data

Table 6.1. Summary Statistics for Duflo-Hanna-Ryan Teacher-Incentive Observed Data

	Variable	Control ($N_c = 54$)		Treated (1			
		Average	(S.D.)	Average	(S.D.)	Min	Max
Pre-treatment	pctprewritten	0.19	(0.19)	0.16	(0.17)	0.00	0.67
Post-treatment	open	0.58	(0.19)	0.80	(0.13)	0.00	1.00
	pctpostwritten	0.47	(0.19)	0.52	(0.23)	0.05	0.92
	written	0.92	(0.45)	1.09	(0.42)	0.07	2.22
	written_all	0.46	(0.32)	0.60	(0.39)	0.04	1.43

Confidence interval for each of the four outcomes:

τ̂	(s. e.)	95% C.I.
0.22	(0.03)	(0.15,0.28)
0.05	(0.04)	(-0.03, 0.13)
0.17	(0.08)	(0.00, 0.34)
0.14	(0.07)	(0.00, 0.28)

Application to the Duflo-Hanna-Ryan data

Table 6.1. Summary Statistics for Duflo-Hanna-Ryan Teacher-Incentive Observed Data

	Variable	Control (/	$V_c = 54$)	Treated (/			
		Average	(S.D.)	Average	(S.D.)	Min	Max
Pre-treatment	pctprewritten	0.19	(0.19)	0.16	(0.17)	0.00	0.67
Post-treatment	open	0.58	(0.19)	0.80	(0.13)	0.00	1.00
	pctpostwritten	0.47	(0.19)	0.52	(0.23)	0.05	0.92
	written	0.92	(0.45)	1.09	(0.42)	0.07	2.22
	written_all	0.46	(0.32)	0.60	(0.39)	0.04	1.43

Analysis on two different subgroups: within each subgroup we still have complete randomization of assignments

Variable	pctpre = 0 $(N = 40)$			pctprewritten > 0 ($N = 67$)			Difference		
	$\hat{ au}$	(s. e.)	95% C.I.	$\hat{ au}$	(s. e.)	95% C.I.	EST	$\widehat{(s.e.)}$	95% C.I.
open	0.23	(0.05)	(0.14,0.32)	0.21	(0.04)	(0.13, 0.29)	0.02	(0.06)	(-0.10,0.14)
pctpost written	-0.004	(0.06)	(-0.16,0.07)	0.11	(0.05)	(0.01,0.21)	-0.15	(0.08)	(-0.31,0.00)
written	0.20	(0.10)	(0.00, 0.40)	0.18	(0.10)	(-0.03, 0.38)	0.03	(0.15)	(-0.26, 0.31)
written _all	0.04	(0.07)	(-0.10,0.19)	0.22	(0.09)	(0.04,0.40)	-0.18	(0.12)	(-0.41, 0.05)

Fisher v.s. Neyman

- Like Fisher, Neyman proposed randomization-based inference
- Unlike Fisher,
 - estimands are average treatment effects
 - heterogenous treatment effects are allowed
 - population as well as sample inference is possible
 - asymptotic approximation is required for inference
- Fisher's approach can easily be applied to deal with any randomization mechanism in an experiment, but it can be much harder for Neyman's approach