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Lecture 7

• Stratified randomized experiment

• Fisher’s exact p-value

• Neyman’s repeated sampling approach

• Regression analysis

Topic: Stratified randomized experiments



The project STAR example 
(Mosteller. 1997. Bull. Am. Acad. Arts Sci.)

• The student-Teacher Achievement Ratio Project (1985-1989) 
• More than 10,000 students involved with the cost of $12 million 
• Effects of class size in early grade levels 
• 3 arms: Small class (13-17 students), Regular-sized class (22-25 students), Regular class 

with aid

• Stratified randomization procedure
• Students and teachers were randomly assigned to the one of the 3 arms
• A school need to have enough students to allow at least one class per arm to be eligible 
• Once a school is admitted, a decision was made on the number of classes per arm
• The unit is a teacher in a class, instead of a student to avoid violation of no interference 

assumption
• Randomization of units within each school



The project STAR example 
(Mosteller. 1997. Bull. Am. Acad. Arts Sci.)

• Understanding the randomization procedure
• Two randomizations happen in the experiment

• Randomization of teachers
• Randomization of students

• Our causal analysis only relies on the randomization of teachers
• The treatment effect on a particular teacher in a particular school is comparing the 

test score of being randomly assigned to a type of class and the test score of being 
randomly assigned to another type of class

• The randomization of students helps interpretating our results
• Treatment effect between two arms can be explained by the classroom size difference 

instead of the systematic differences of students



• We focus on two 
arms (regular 
classes v.s. small 
classes) and 16 
schools that have 
at least two 
classes per arm 



Stratified randomized experiment
• Basic procedure: 

1. Blocking (Stratification): create groups of similar units based on pre-treatment covariates, 
let 𝐵! ∈ {1,⋯ , 𝐽} be the block indicator

2. Block (Stratified) randomization: completely randomize treatment assignment within each 
group 

• Blocking can improve the efficiency by minimizing the variance of the potential outcomes 
within each strata

“Block what you can and randomize what you cannot” 
                                                                 Box, et al. (2005). Statistics for Experimenters. 2nd eds. Wiley

• Assignment probability
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Fisher’s exact p-value
• We still focus on the Sharp null: 𝐻+: 𝑌! 0 ≡ 𝑌! 1  for all 𝑖 = 1,⋯ ,𝑁

• Choice of test statistics:
Denote sample means for every strata / block

 

• Weighted combination of group mean differences across blocks

 

• Weights based on relative sample size 𝜆 𝑗 = ! "
!

sample difference is more accurate in larger strata
• “inverse-variance-weighting”: assume that per-strata potential outcomes sample variances 

𝑆#$(𝑗) ≡ 𝑆%$ 𝑗 ≡ 𝑆$ for all 𝑗, then under stratified randomization
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Fisher’s exact p-value
• Choice of test statistics:

• Can we simply use the two-sample mean difference statistic 𝑇 = H𝑌&-./ − H𝑌0-./ ?
• This is still one test statistic and we will still get valid Fisher’s exact p-value if we follow 

the stratified randomization procedure to generate the reference distribution
• We may not always get small value of 𝑇 even wen the sharp null is true

• Example: 
𝑌! 0 ≡ 𝑌! 1 = 1 for strata 1 and 𝑌! 0 ≡ 𝑌! 1 = 2 for strata 2, 
𝑁0 1 = 𝑁& 1 = 5, 𝑁0 2 = 15 and 𝑁& 2 = 5
Then H𝑌&-./ = 1.5 and H𝑌0-./ = 1.75 

• This is the Simpson’s paradox: we have different weights of the strata for the 
treated group and control group

• Rank-based statistics
• Get 𝑅!/3453 as the within-strata rank of each individual 𝑖 (definition page 196)
• Average difference of within-strata ranks between treatment and control

H𝑅&/3453 − H𝑅0/3453



Neyman’s repeated sampling approach
• Target: PATE or SATE 𝜏 = ∑"

* "
*
𝜏(𝑗) where 𝜏(𝑗) is the PATE or SATE for strata 𝑗 

• Analysis procedure
1. Apply Neyman’s analysis to each strata / block

2. Aggregate block-specific estimates and variances
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• Key property: 
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The project STAR results
• Fisher’s exact p-value

• P-values for the first 3 are similar as 
most schools have 4 classes

• Large p-value for rank-based statistics 
as # classes too few in most schools

Test statistics P-value

Weights
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• Neyman’s approach

• �̂�/3453 = 0.224, X𝕍 �̂�/3453 = 0.0921 
• (In correct) if we analyze as if it is a 

completely randomized experiment
• �̂�678 = H𝑌&-./ − H𝑌0-./ = 0.224 can 

be a biased estimate for 𝜏
• (𝕍 �̂�&'( = 0.1411 larger standard 

deviation



Linear regression
• Run separate linear regressions within each strata

• Denote 𝐵!(𝑗) as the indicator variable of whether sample 𝑖 belong to strata 𝑗 
• If there are no covariates, equivalently, we can write separate linear regression models into a 

joint regression model
𝑌)*+, = 𝛼" + 𝜏(𝑗)𝑊) + 𝜀)

• The underlying model for the potential outcomes 
𝔼 𝑌! 𝑤 | 𝐵! 𝑗 , 𝑗 = 1,⋯ , 𝐽 = 𝛼5 + 𝜏(𝑗)𝑤

• Average causal effect for strata 𝑗 is 𝜏(𝑗)
• The strata indicators 𝐵!(𝑗)  are treated as pre-treatment covariates
• We need to adjust for the strata indicators as we only have conditional independence

𝒀 0 , 𝒀 1 ⊥ 𝑾	|	𝑩(𝑗)

• The homoscedastic error assumption for the joint model is assuming that 
𝕍 𝑌! 0 | 𝐵! 𝑗 , 𝑗 = 1,⋯ , 𝐽 = 𝕍 𝑌! 1 | 𝐵! 𝑗 , 𝑗 = 1,⋯ , 𝐽 = 𝜎1


