Causal Inference Methods and Case Studies

STAT24630

Jingshu Wang

Lecture 8

Topic: post-stratification, pairwise randomized experiment

- Post-stratification
- pairwise randomized experiment
 - Fisher's exact p-value
 - Neyman's repeated sampling approach
 - Regression analysis
 - How to find strata / pairs?

Post-stratification

- In a completely randomized experiment, each assignment vector has the sample probability (P(W=w)) if $\sum_{i=1}^{N} w_i = N_t$
- If we focus on a subgroup S, conditional on $N_{t,S} = \sum_{i \in S} W_i$, the assignment vector for the individuals in the subgroup also has the same probability $(P(W_S = w_S))$ if $\sum_{i \in S} w_i = N_{t,S}$
- So conditional on $N_{t,S}$, we can treat the treatment assignment as from a completely randomized experiment also for the subgroup
- Post-stratification (Miratrix. et al. 1971. J. Royal Stat. Soc. B.)
 - Blocking after the experiment is conducted
 - Analyze the experiment as from a stratified randomized experiment by conditioning on $N_{t,S}$ for each strata S
 - By post-stratification, we can stratify individuals into relatively homogenous subpopulations
 - Post-stratification is nearly as efficient as pre-randomization blocking except with a large number of small strata

Meinert et. al. (1970)'s example

- A completely randomized experiment.
- Treatment is tolbutamide (Z=1) and control is a placebo (Z=0)
- Causal effect: difference in the survival probability

	Age < 55			Age	≥ 55		
	Surviving	Dead		Surv	viving	Dead	
Z = 1	98	8	Z = 1	. 7	76	22	
Z = 0	115	5	Z = 0) (69	16	
		To	$\overline{\mathrm{tal}}$				
		Surv	riving	Dead			Peng's book Section 5.4.1
	Z =	1 1'	74	30			
	Z =	0 18	84	21			
	_						

Subgroup and sample average estimates with post-stratification

	stratum 1	stratum 2	post-stratification	crude
est	-0.034	-0.036	-0.035	-0.045
\mathbf{se}	0.031	0.060	0.032	0.033

Pairwise randomized experiment

Procedure:

- 1. Create J = N/2 pairs of similar units
- 2. Randomize treatment assignment within each pair

Assignment probability

A special case of stratified randomized experiment where N(j) = 2 and $N_t(j) = 1$

$$P(\boldsymbol{W} = \boldsymbol{w} | \boldsymbol{X}) = \begin{cases} \prod_{j=1}^{J} {N(j) \choose N_t(j)}^{-1} = 2^{-N/2} & \text{if } \sum_{i:B_i = j}^{N} w_i = 1 \text{ for } j = 1, \dots, J \\ 0 & \text{otherwise} \end{cases}$$

The Children's television workshop experiment

[Ball, Bogatz, Rubin and Beaton, 1973.]

- The Educational Testing Service (ETS) wanted to evaluate The Electric Company, an American educational children's television series aimed at improving reading skills for young children
- Two sites, Yongstown, Ohio and Fresno, California where the show was not broadcast on local television, were selected to evaluate the effect of watching the show at school
- Within each school, a pair of two classes are selected
 - One class randomly assigned to watch the show
 - Another class continue with regular reading curriculum

Data from Youngstown

Pair	Treatment	Pre-Test Score	Post-Test Score
G_i	W_i	X_i	Y_i^{obs}
1	0	12.9	54.6
1	1	12.0	60.6
2	0	15.1	56.5
2	1	12.3	55.5
3	0	16.8	75.2
3	1	17.2	84.8
4	0	15.8	75.6
4	1	18.9	101.9
5	0	13.9	55.3
5	1	15.3	70.6
6	0	14.5	59.3
6	1	16.6	78.4
7	0	17.0	87.0
7	1	16.0	84.2
8	0	15.8	73.7
8	1	20.1	108.6

- Two first-grade classes from each of eight schools participate in the experiment
- ETS performed reading ability tests to the kids both before the program started and after it finished.

Data from Youngstown

Some notations

Pair	Unit A					Unit B				
	$Y_{i,A}(0)$	$Y_{i,A}(1)$	$W_{i,A}$	$Y_{i,A}^{\text{obs}}$	$X_{i,A}$	$Y_{i,B}(0)$	$Y_{i,B}(1)$	$W_{i,B}$	$Y_{i,B}^{\text{obs}}$	$X_{i,B}$
1	54.6	?	0	54.6	12.9	?	60.6	1	60.6	12.0
2	56.5	?	0	56.5	15.1	?	55.5	1	55.5	13.9
3	75.2	?	0	75.2	16.8	?	84.8	1	84.8	17.2
4	76.6	?	0	75.6	15.8	?	101.9	1	101.9	18.9
5	55.3	?	0	55.3	13.9	?	70.6	1	70.6	15.3
6	59.3	?	0	59.3	14.5	?	78.4	1	78.4	16.6
7	87.0	?	0	87.0	17.0	?	84.2	1	84.2	16.0
8	73.7	?	0	73.7	15.8	?	108.6	1	108.6	20.1

Average treatment effect within pair j

$$\tau^{\text{pair}}(j) = \frac{1}{2} \sum_{i:G_i=j} (Y_i(1) - Y_i(0)) = \frac{1}{2} ((Y_{j,A}(1) - Y_{j,A}(0)) + (Y_{j,B}(1) - Y_{j,B}(0))).$$

• Observed outcomes for both treatment and control groups

$$Y_{j,c}^{\text{obs}} = \begin{cases} Y_{j,A}^{\text{obs}} & \text{if } W_{i,A} = 0, \\ Y_{j,B}^{\text{obs}} & \text{if } W_{i,A} = 1, \end{cases}$$
 and $Y_{j,t}^{\text{obs}} = \begin{cases} Y_{j,B}^{\text{obs}} & \text{if } W_{i,A} = 0, \\ Y_{j,A}^{\text{obs}} & \text{if } W_{i,A} = 1. \end{cases}$

Fisher's exact p-value

- We still focus on the **Sharp null**: $H_0: Y_i(0) \equiv Y_i(1)$ for all $i = 1, \dots, N$
- Choice of test statistics:
 - Average group mean differences across pairs

$$T^{\text{dif}} = \left| \frac{1}{J} \sum_{j=1}^{J} \left(Y_{j,t}^{\text{obs}} - Y_{j,c}^{\text{obs}} \right) \right| = \left| \overline{Y}_{t}^{\text{obs}} - \overline{Y}_{c}^{\text{obs}} \right|$$

As each pair has exactly one treatment and one control

- We don't need to consider different weights
- No worry of Simpson's paradox
- Rank statistics
 - Use population ranks: $T = |\overline{\operatorname{rank}}(Y_t^{\text{obs}}) \overline{\operatorname{rank}}(Y_c^{\text{obs}})|$
 - Use within-pair ranks

$$T^{\text{rank,pair}} = \left| \frac{2}{N} \sum_{j=1}^{N/2} \left(\mathbf{1}_{Y_{j,1}^{\text{obs}} > Y_{j,0}^{\text{obs}}} - \mathbf{1}_{Y_{j,1}^{\text{obs}} < Y_{j,0}^{\text{obs}}} \right) \right|$$

Application to the television workshop data

Fisher's exact p-values

- Mean differences: T = 13.4, pvalue = 0.031
- Rank mean differences: T = 3.75, pvalue = 0.031
- Within-pair rank differences: T = 0.5, pvalue = 0.29
- Rank v.s. within-pair rank
 - Both can reduce the sensitivity to outliers
 - Using within-pair ranks can have more power when there is substantial variation in the level of the outcomes between pairs
 - Otherwise, using within-pair ranks loses power as it treats small within-pair differences (which may be due to random noises) equally with large within-pair differences
 - Using within-pair ranks is more appropriate for large, heterogenous population

Neyman's repeated sampling approach

- Target: PATE or SATE $\tau = \sum_{j} \frac{N(j)}{N} \tau(j)$ where $\tau(j)$ is the PATE or SATE for strata j
- Point estimate:

$$\hat{\tau}^{\text{pair}}(j) = Y_{j,t}^{\text{obs}} - Y_{j,c}^{\text{obs}} \qquad \hat{\tau}^{\text{dif}} = \frac{1}{N/2} \sum_{j=1}^{N/2} \hat{\tau}^{\text{pair}}(j) = \overline{Y}_{t}^{\text{obs}} - \overline{Y}_{c}^{\text{obs}}$$

- We can not estimate the within-pairs variances as there are only two units per pair
- Use the following empirical estimate of the uncertainty (paired t-test)

$$\hat{\mathbb{V}}^{\text{pair}}\left(\hat{\tau}^{\text{dif}}\right) = \frac{4}{N \cdot (N-2)} \cdot \sum_{i=1}^{N/2} \left(\hat{\tau}^{\text{pair}}(j) - \hat{\tau}^{\text{dif}}\right)^2$$

Above estimate is conservative

$$\mathbb{E}\left[\hat{\mathbb{V}}^{\text{pair}}\left(\hat{\tau}^{\text{dif}}\right)\right] = \mathbb{V}_{W}(\hat{\tau}^{\text{dif}}) + \frac{4}{N \cdot (N-2)} \cdot \sum_{j=1}^{N/2} \left(\tau^{\text{pair}}(j) - \tau\right)^{2}$$

Application to the television workshop data

- Est. = 13.4, sd. = 4.6, 95% CI: [4.3, 22.5]
- As we have 8 pairs, Gaussian approximation is inaccurate and it's better to compare with a t-distribution with df = 7
- 95% CI comparing with t-distribution: [2.5, 24.3]
- If we treat the data as from completely randomized experiment, then sd. = 7.8

Pair	Outcome for Control Unit	Outcome for Treated Unit	Difference
1	54.6	60.6	6.0
2	56.5	55.5	-1.0
3	75.2	84.8	9.6
4	75.6	101.9	26.3
5	55.3	70.6	15.3
6	59.3	78.4	19.1
7	87.0	84.2	-2.8
8	73.7	108.6	34.9
Mean	67.2	80.6	13.4
(S.D.)	(12.2)	(18.6)	(13.1)

Linear regression

- We can not run separate linear regressions within each pair, as there are only 2 units per pair
- We assume that $Y_i(w) = \alpha_i + \tau_i w + \boldsymbol{\beta}^T \boldsymbol{X}_i + \varepsilon_i^*$ where $\mathbb{E}(\tau_i \tau \mid \boldsymbol{X}_i) = \boldsymbol{\gamma}^T (\boldsymbol{X}_i \overline{\boldsymbol{X}})$
- Then we have

$$\mathbb{E}(Y_{j,t}^{\text{obs}} - Y_{j,c}^{\text{obs}}|\boldsymbol{W} = \boldsymbol{w}, \boldsymbol{X} = \boldsymbol{x}) = \tau + \boldsymbol{\gamma}^{T}(\overline{\boldsymbol{X}}_{j} - \overline{\boldsymbol{X}}) + (\boldsymbol{\beta} + \frac{\boldsymbol{\gamma}}{2})^{T}(\boldsymbol{X}_{j,t} - \boldsymbol{X}_{j,c})$$

where $X_{j,t}$ and $X_{j,c}$ are the covariates for the treated and control unit of the jth pair, and \overline{X}_j is the average between the two

- τ is still the PATE
- We still implicitly condition on the pair indicators variables
- If $\gamma = 0$, then $\mathbb{E}(Y_{j,t}^{\text{obs}} Y_{j,c}^{\text{obs}} | W = w, X = x) = \tau + \beta^T (X_{j,t} X_{j,c})$ we only need to include the covariates differences in the linear regression model
- We can assume homoscedastic errors in the linear regression even if $\mathbb{V}(Y_i(0)) \neq \mathbb{V}(Y_i(1))$

How to perform stratification / pairing

- Univariate blocking: discrete or discretized variable
- Multivariate blocking: Mahalanobis distance

$$D(\mathbf{X}_i, \mathbf{X}_j) = \sqrt{(\mathbf{X}_i - \mathbf{X}_j)^{\top} \widehat{\mathbb{V}(\mathbf{X})}^{-1} (\mathbf{X}_i - \mathbf{X}_j)}$$

Greedy algorithms

- Matching: pair two units with the shortest distance, set them aside, and repeat
- Blocking: randomly choose one unit and choose N_j units with the shortest distances, set them aside, and repeat

But the resulting matches may not be optimal

Optimal matching

- $D: N \times N$ matrix of pairwise distance or a cost matrix
- Select *N* elements of *D* such that there is only one element in each row and one element in each column and the sum of pairwise distances is minimized
- Linear Sum Assignment Problem (LSAP)
 - Binary $N \times N$ matching matrix: M with $M_{ij} \in \{0,1\}$
 - Optimization problem

$$\min_{M} \sum_{i=1}^{N} \sum_{j=1}^{N} M_{ij} D_{ij} \quad \text{subject to } \sum_{i=1}^{N} M_{ij} = 1, \sum_{j=1}^{N} M_{ij} = 1$$

where we set $D_{ii} = \infty$ for all i

can apply the Hungarian algorithm

Example: evaluation of health insurance policy

[Public policy for the poor? A randomised assessment of the Mexican universal health insurance programme. *The lancet, 2009.*]

- Seguro Popular, a programme aimed to deliver health insurance, regular and preventive medical care, medicines, and health facilities to 50 million uninsured Mexicans
- Units: health clusters = predefined health facility catchment areas
- 4 pre-treatment cluster-average covariates: age, education, household size, household assets
- 100 clusters, 50 pairs

