Causal Inference Methods and Case Studies

STAT24630
Jingshu Wang

Lecture 8

Topic: post-stratification, pairwise randomized experiment

- Post-stratification
- pairwise randomized experiment
- Fisher's exact p-value
- Neyman's repeated sampling approach
- Regression analysis
- How to find strata / pairs?

Post-stratification

- In a completely randomized experiment, each assignment vector has the sample probability ($P(\boldsymbol{W}=\boldsymbol{w})$) if $\sum_{i=1}^{N} w_{i}=N_{t}$
- If we focus on a subgroup S, conditional on $N_{t, S}=\sum_{i \in S} W_{i}$, the assignment vector for the individuals in the subgroup also has the same probability $\left(P\left(\boldsymbol{W}_{S}=\boldsymbol{w}_{S}\right)\right.$) if $\sum_{i \in S} w_{i}=N_{t, S}$
- So conditional on $N_{t, s}$, we can treat the treatment assignment as from a completely randomized experiment also for the subgroup
- Post-stratification (Miratrix. et al. 1971. J. Royal Stat. Soc. B.)
- Blocking after the experiment is conducted
- Analyze the experiment as from a stratified randomized experiment by conditioning on $N_{t, S}$ for each strata S
- By post-stratification, we can stratify individuals into relatively homogenous subpopulations
- Post-stratification is nearly as efficient as pre-randomization blocking except with a large number of small strata

Meinert et. al. (1970)'s example

- A completely randomized experiment.
- Treatment is tolbutamide $(Z=1)$ and control is a placebo $(Z=0)$
- Causal effect: difference in the survival probability

Age <55			Age ≥ 55		
	Surviving	Dead		Surviving	Dead
$Z=1$	98	8	$Z=1$	76	22
$Z=0$	115	5	$Z=0$	69	16
		Sur	ving	Dead	
	$Z=1$			30	
	$Z=0$			21	

Peng's book Section 5.4.1

- Subgroup and sample average estimates with post-stratification

	stratum 1	stratum 2	post-stratification	crude
est	-0.034	-0.036	-0.035	-0.045
se	0.031	0.060	0.032	0.033

Pairwise randomized experiment

- Procedure:

1. Create $J=N / 2$ pairs of similar units
2. Randomize treatment assignment within each pair

- Assignment probability

A special case of stratified randomized experiment where $N(j)=2$ and $N_{t}(j)=1$

$$
P(\boldsymbol{W}=\boldsymbol{w} \mid \boldsymbol{X})=\left\{\begin{array}{c}
\prod_{j=1}^{J}\binom{N(j)}{N_{t}(j)}^{-1}=2^{-N / 2} \text { if } \sum_{i: B_{i}=j}^{N} w_{i}=1 \text { for } j=1, \cdots, J \\
0 \\
\text { otherwise }
\end{array}\right.
$$

The Children's television

 workshop experiment [Ball, Bogatz, Rubin and Beaton, 1973.]- The Educational Testing Service (ETS) wanted to evaluate The Electric Company, an American educational children's television series aimed at improving reading skills for young children
- Two sites, Yongstown, Ohio and Fresno, California where the show was not broadcast on local television, were selected to evaluate the effect of watching the show at school
- Within each school, a pair of two classes are selected
- One class randomly assigned to watch the show
- Another class continue with regular reading curriculum

Data from Youngstown

Pair	Treatment	Pre-Test Score	Post-Test Score
G_{i}	W_{i}	X_{i}	$Y_{i}^{\text {obs }}$
1	0	12.9	54.6
1	1	12.0	60.6
2	0	15.1	56.5
2	1	12.3	55.5
3	0	16.8	75.2
3	1	17.2	84.8
4	0	15.8	75.6
4	1	18.9	101.9
5	0	13.9	55.3
5	1	15.3	70.6
6	1	14.5	59.3
6	0	16.6	78.4
7	1	17.0	87.0
7	0	16.0	84.2
8	1	15.8	73.7
8	20.1	108.6	

- Two first-grade classes from each of eight schools participate in the experiment
- ETS performed reading ability tests to the kids both before the program started and after it finished.

Data from Youngstown

Some notations

Pair	Unit A					Unit B				
	$Y_{i, A}(0)$	$Y_{i, A}(1)$	$W_{i, A}$	$Y_{i, A}^{\mathrm{obs}}$	$X_{i, A}$	$Y_{i, B}(0)$	$Y_{i, B}(1)$	$W_{i, B}$	$Y_{i, B}^{\mathrm{obs}}$	$X_{i, B}$
1	54.6	?	0	54.6	12.9	?	60.6	1	60.6	12.0
2	56.5	?	0	56.5	15.1	?	55.5	1	55.5	13.9
3	75.2	?	0	75.2	16.8	?	84.8	1	84.8	17.2
4	76.6	?	0	75.6	15.8	?	101.9	1	101.9	18.9
5	55.3	?	0	55.3	13.9	?	70.6	1	70.6	15.3
6	59.3	?	0	59.3	14.5	?	78.4	1	78.4	16.6
7	87.0	?	0	87.0	17.0	?	84.2	1	84.2	16.0
8	73.7	?	0	73.7	15.8	?	108.6	1	108.6	20.1

- Average treatment effect within pair j

$$
\tau^{\mathrm{pair}}(j)=\frac{1}{2} \sum_{i: G_{i}=j}\left(Y_{i}(1)-Y_{i}(0)\right)=\frac{1}{2}\left(\left(Y_{j, A}(1)-Y_{j, A}(0)\right)+\left(Y_{j, B}(1)-Y_{j, B}(0)\right)\right) .
$$

- Observed outcomes for both treatment and control groups

$$
Y_{j, c}^{\mathrm{obs}}=\left\{\begin{array}{ll}
Y_{j, A}^{\mathrm{obs}} & \text { if } W_{i, A}=0, \\
Y_{j, B}^{\mathrm{obs}} & \text { if } W_{i, A}=1,
\end{array} \quad \text { and } \quad Y_{j, t}^{\mathrm{obs}}= \begin{cases}Y_{j, B}^{\mathrm{obs}} & \text { if } W_{i, A}=0, \\
Y_{j, A}^{\mathrm{obs}} & \text { if } W_{i, A}=1 .\end{cases}\right.
$$

Fisher's exact p-value

- We still focus on the Sharp null: $H_{0}: Y_{i}(0) \equiv Y_{i}(1)$ for all $i=1, \cdots, N$
- Choice of test statistics:
- Average group mean differences across pairs

$$
T^{\mathrm{dif}}=\left|\frac{1}{J} \sum_{j=1}^{J}\left(Y_{j, t}^{\mathrm{obs}}-Y_{j, c}^{\mathrm{obs}}\right)\right|=\left|\bar{Y}_{t}^{\mathrm{obs}}-\bar{Y}_{c}^{\mathrm{obs}}\right|
$$

As each pair has exactly one treatment and one control

- We don't need to consider different weights
- No worry of Simpson's paradox
- Rank statistics
- Use population ranks: $T=\left|\overline{\operatorname{rank}}\left(Y_{t}^{\mathrm{obs}}\right)-\overline{\operatorname{rank}}\left(Y_{c}^{\text {obs }}\right)\right|$
- Use within-pair ranks

$$
T^{\mathrm{rank}, \text { pair }}=\left|\frac{2}{N} \sum_{j=1}^{N / 2}\left(\mathbf{1}_{Y_{j, 1}^{\mathrm{obs}}>Y_{j, 0}^{\mathrm{obs}}}-\mathbf{1}_{Y_{j, 1}^{\mathrm{obs}}<Y_{j, 0}^{\mathrm{obs}}}\right)\right|
$$

Application to the television workshop data

- Fisher's exact p-values
- Mean differences: $T=13.4$, pvalue $=0.031$
- Rank mean differences: $T=3.75$, pvalue $=0.031$
- Within-pair rank differences: $T=0.5$, pvalue $=0.29$
- Rank v.s. within-pair rank
- Both can reduce the sensitivity to outliers
- Using within-pair ranks can have more power when there is substantial variation in the level of the outcomes between pairs
- Otherwise, using within-pair ranks loses power as it treats small within-pair differences (which may be due to random noises) equally with large within-pair differences
- Using within-pair ranks is more appropriate for large, heterogenous population

Neyman's repeated sampling approach

- Target: PATE or SATE $\tau=\sum_{j} \frac{N(j)}{N} \tau(j)$ where $\tau(j)$ is the PATE or SATE for strata j
- Point estimate:

$$
\hat{\tau}^{\mathrm{pair}}(j)=Y_{j, t}^{\mathrm{obs}}-Y_{j, c}^{\mathrm{obs}} \quad \hat{\tau}^{\mathrm{dif}}=\frac{1}{N / 2} \sum_{j=1}^{N / 2} \hat{\tau}^{\mathrm{pair}}(j)=\bar{Y}_{\mathrm{t}}^{\mathrm{obs}}-\bar{Y}_{\mathrm{c}}^{\mathrm{obs}}
$$

- We can not estimate the within-pairs variances as there are only two units per pair
- Use the following empirical estimate of the uncertainty (paired t-test)

$$
\hat{\mathbb{V}}^{\mathrm{pair}}\left(\hat{\tau}^{\mathrm{dif}}\right)=\frac{4}{N \cdot(N-2)} \cdot \sum_{j=1}^{N / 2}\left(\hat{\tau}^{\mathrm{pair}}(j)-\hat{\tau}^{\mathrm{dif}}\right)^{2}
$$

- Above estimate is conservative

$$
\mathbb{E}\left[\hat{\mathbb{V}}^{\text {pair }}\left(\hat{\tau}^{\mathrm{dif}}\right)\right]=\mathbb{V}_{W}\left(\hat{\tau}^{\mathrm{dif}}\right)+\frac{4}{N \cdot(N-2)} \cdot \sum_{j=1}^{N / 2}\left(\tau^{\text {pair }}(j)-\tau\right)^{2}
$$

Application to the television workshop data

- Est. = 13.4, sd. = 4.6, 95\% CI: [4.3, 22.5]
- As we have 8 pairs, Gaussian approximation is inaccurate and it's better to compare with a t -distribution with $\mathrm{df}=7$
- $95 \% \mathrm{Cl}$ comparing with t-distribution: [2.5, 24.3]
- If we treat the data as from completely randomized experiment, then sd. $=7.8$

Pair	Outcome for Control Unit	Outcome for Treated Unit	Difference
1	54.6	60.6	6.0
2	56.5	55.5	-1.0
3	75.2	84.8	9.6
4	75.6	101.9	26.3
5	55.3	70.6	15.3
6	59.3	78.4	19.1
7	87.0	84.2	-2.8
8	73.7	108.6	34.9
Mean	67.2	80.6	13.4
(S.D.)	(12.2)	(18.6)	(13.1)

Linear regression

- We can not run separate linear regressions within each pair, as there are only 2 units per pair
- We assume that $Y_{i}(w)=\alpha_{j}+\tau_{i} w+\boldsymbol{\beta}^{T} \boldsymbol{X}_{i}+\varepsilon_{i}^{*}$ where $\mathbb{E}\left(\tau_{i}-\tau \mid \boldsymbol{X}_{i}\right)=\boldsymbol{\gamma}^{T}\left(\boldsymbol{X}_{i}-\overline{\boldsymbol{X}}\right)$
- Then we have

$$
\mathbb{E}\left(Y_{j, t}^{\mathrm{obs}}-Y_{j, c}^{\mathrm{obs}} \mid \boldsymbol{W}=\boldsymbol{w}, \boldsymbol{X}=\boldsymbol{x}\right)=\tau+\boldsymbol{\gamma}^{T}\left(\overline{\boldsymbol{X}}_{j}-\overline{\boldsymbol{X}}\right)+\left(\boldsymbol{\beta}+\frac{\boldsymbol{\gamma}}{2}\right)^{T}\left(\boldsymbol{X}_{j, t}-\boldsymbol{X}_{j, c}\right)
$$

where $\boldsymbol{X}_{j, t}$ and $\boldsymbol{X}_{j, c}$ are the covariates for the treated and control unit of the j th pair, and $\overline{\boldsymbol{X}}_{\boldsymbol{j}}$ is the average between the two

- τ is still the PATE
- We still implicitly condition on the pair indicators variables
- If $\boldsymbol{\gamma}=\mathbf{0}$, then $\mathbb{E}\left(Y_{j, t}^{\mathrm{obs}}-Y_{j, c}^{\mathrm{obs}} \mid \boldsymbol{W}=\boldsymbol{w}, \boldsymbol{X}=\boldsymbol{x}\right)=\tau+\boldsymbol{\beta}^{T}\left(\boldsymbol{X}_{j, t}-\boldsymbol{X}_{j, c}\right)$ we only need to include the covariates differences in the linear regression model
- We can assume homoscedastic errors in the linear regression even if $\mathbb{V}\left(Y_{i}(0)\right) \neq \mathbb{V}\left(Y_{i}(1)\right)$

How to perform stratification / pairing

- Univariate blocking: discrete or discretized variable
- Multivariate blocking: Mahalanobis distance

$$
D\left(\mathbf{X}_{i}, \mathbf{X}_{j}\right)=\sqrt{\left(\mathbf{X}_{i}-\mathbf{X}_{j}\right)^{\top} \widehat{\mathbb{V}(\mathbf{X})}}{ }^{-1}\left(\mathbf{X}_{i}-\mathbf{X}_{j}\right)
$$

Greedy algorithms

- Matching: pair two units with the shortest distance, set them aside, and repeat
- Blocking: randomly choose one unit and choose N_{j} units with the shortest distances, set them aside, and repeat

But the resulting matches may not be optimal

Optimal matching

- $D: N \times N$ matrix of pairwise distance or a cost matrix
- Select N elements of D such that there is only one element in each row and one element in each column and the sum of pairwise distances is minimized
- Linear Sum Assignment Problem (LSAP)
- Binary $N \times N$ matching matrix: M with $M_{i j} \in\{0,1\}$
- Optimization problem

$$
\min _{M} \sum_{i=1}^{N} \sum_{j=1}^{N} M_{i j} D_{i j} \quad \text { subject to } \sum_{i=1}^{N} M_{i j}=1, \sum_{j=1}^{N} M_{i j}=1
$$

where we set $D_{i i}=\infty$ for all i

- can apply the Hungarian algorithm

Example: evaluation of health insurance policy

[Public policy for the poor? A randomised assessment of the Mexican universal health insurance programme. The lancet, 2009.]

- Seguro Popular, a programme aimed to deliver health insurance, regular and preventive medical care, medicines, and health facilities to 50 million uninsured Mexicans
- Units: health clusters = predefined health facility catchment areas
- 4 pre-treatment cluster-average covariates: age, education, household size, household assets
- 100 clusters, 50 pairs

