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Today’s topics:

» Correlated samples /responses in GLM

« Normal linear mixed effect models (LMM)

 Random intercept and random slope models
 Hierarchical models for a multi-level design

 Model estimation: MLE, REML and BLUP



Modeling correlated responses

For the responses: y1,2, -, Yn, we have assumed independence, but some
samples may be correlated. Examples:

e Kids of one mom, longitudinal data for one individual
e Students in the same classroom with many classrooms

e Multiple individuals measured in one day with many different days

Form of the data: there are ¢ = 1,2,--- ,n groups (individuals / classrooms
/ days), and each of them has s = 1,2,---,d; samples. The response is
denoted as y;s with its covariates ;.

We consider that the correlations are caused by shared latent
variables across samples



Formulation of GLMM

Generalized linear mixed model (GLMM):
9(pis) = X8 + Zjgus

where X,;; and Z; are observed, and u; are i.i.d. random variables across
1 following some unknown distribution F'.

e The responses (y;1, - ,¥:q,) Within each group ¢ are correlated be-
cause they share the same latent random variable u;

e Z1u; models that the influences of u; on different samples depend on
some covariate Z;



Two motivations of GLMM

* We use GLMM to model dependence structures among samples

* We treat u; as an unknown coefficient of Z;.. We add prior on u; (make
u; random) to borrow information across i (so that we only need to
estimate unknown parameters in F instead of estimating each u;).
 Example: Z;; = 1 assuming group members share a common group-

level effect

* The first perspective treats u; as latent factors, and the second
perspective treats u; as random coefficients



Normal linear mixed models

e (3 is a length p vector, and is for fixed effects
o u; bRk N (0,X%,) can be a vector when Z;; is a vector. It models the
random effects

® € "R N (0, 02) are the individual randomness of each sample

Matrix form for each group i:

where
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Linear random intercept model

Yis = X;of + ui + €
e Matrix form for each group i:
yi = XiB+ul +¢
and Var(y;) = 02117 + 021

e for any s # k

0.2

u >0
o2 +02 —

corr(Yis, Yik) =

(1)

Correlations within group are restricted to be non-negative, why?



Linear model with random intercept and random slope

Example: a clinical study understanding the effect of a drug treating vet-
erans suffering from chronic alcohol dependence.

e Each individual (veteran) is measured at for time points: 4, 26, 52
and 78 weeks

e Total number of veterans: 627
e The response is a financial satisfaction score

e Each individual is randomly assigned to the drug treatment or placebo
treatment

e Two covariates: whether the individual takes the drug or not, the
time point

e There are in total 726 x 4 observations: ;s



Linear model with random intercept and random slope

In our model, we want to consider three aspects

the drug may have a different effect at different time points
 So we want to add an interaction term: drug X time points

the four measures for the same individual are correlated
 We want to add an individual-specific latent factor (random intercept)

Time can have a different effect for different individual

* We want to have a different coefficient of time for different individual,
we make the coefficients random slopes if we want to borrow
information across individuals



Linear model with random intercept and random slope

We build the following model:
Yis = (Bo + wi1) + (B1 + ui2)ts + Boxi + Bstsxi + €is

o t; = log(week number + 1), x; is whether the individual takes the
drug or not

e In terms of the general form of the LMM model, here Z;; = (1,t;)
and U; = (’U,il, UiZ)



Linear model with random intercept and random slope

We build the following model:
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o t; = log(week number + 1), x; is whether the individual takes the
drug or not
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Hierarchical models

Example: check data in R data example 8

28 schools




LMM for a multi-level design

Yics = ,BO + ﬁlPTHKz’cs + ,BZSCics + BSTVics + Us + Ves + €ics

e School effect: wu, “EE N (0,02)

i.i.d.
e classroom effects: v.s ~ N(0,02

e ii.d.
e individual randomness: €;.; ~ N(0,0?)
e Correlation between students in the same classroom: for any i # i’
2 2
o, + oy
02 + 02 + o2

Corr (yics . yi’cs) —

e Correlation between students in the same school but different class-
rooms: for any c # ¢/, i1, i
o,

2 2 2
au—i—av—l—ae

COI‘I‘(yil csy Yiog c’s) —



LMM model estimation

Let the total number of individuals be N and total number of unique ran-

dom effect terms be p,. In general, we can write down a matrix form of the
LMM for the whole dataset:

y=XB+Zu+e

Here y € RN, u € RP2 and € € RY are vectors of random variables, and X
and Z are known matrices (Chapter 9.3.1).

For instance, if the data follows the random intercept model (model (1)),

then
A 0 0
Y1 X1 / 01 Z, 0 \ U1 €1
Yy = : 7X — : aZ — y U = y € =
' 0 0 0



LMM model estimation

In LMM, we assume that u ~ N(0,X,). If the data follows the random
intercept model (model (1)), then 3, = diag(3,, - ,%,). Marginally, y
follows the distribution that

y~N(XB,ZZ8.ZT + R.)
where R, = Cov(e) = o1.

Define V = ZX,Z7 + R,, if V is known, then then we have a closed-form
MLE solution for 8, which is

f=B(v)=(xXTV1x)"IxTV 1y

In practice, V' is unknown, we will plug in an estimate V and use the
estimate

B=BV)
How to find V?



Residual ML (REML)

How can we estimate V without knowing (37

The projection matrix in linear regression: Px = X (X7 X)!X”. Remem-
ber that the residuals of least square in linear regression is

(I-Px)y=(I-X(X"X)"'X")y
Under the LMM model, we have
Ly=(I - Px)y = (I - X(X"X)"'XT)y = (I - Px)(Zu+e¢)
where we define L = I — Px. We know that
Ly ~ N(0,LVL"Y)

thus the likelihood of Ly does not involve 8 and we can maximize this
likelihood to find the estimate of V.



Prediction of the random effects u;

 We may be interested in finding the groups that has high/low random
effects.

* We use “prediction” instead of “estimation” as in LMM, u; are random
variables instead of unknown parameters

 Compared to fixed effect model that treat each u; as different unknown
parameters, in LMM we additionally assume u;~N (0, X,,)

* Benefits:
 Reduce the number of parameters
 Borrow information across groups



BLUP: best linear unbiased predictor

We predict each u; by an estimate of its posterior mean:
U; = Elu; | y]
The joint distribution of y and w is
(7 N Xp Z¥. 2T+ R, 732,
u) 0 )’ AL )

From above we can get the conditional distribution u | y which also follows
a Normal distribution, the conditional expectation is

Eluly] =2.Z2"(Z22.Z" + R) 'y — XB) =22V (y — XPB)



BLUP: best linear unbiased predictor

Eluly] =2.Z2"(Z22.Z" + R) 'y — XB) =22V (y — XB)

When V is known, our prediction will be
=X, 2TV - X(XTVvIxX)" I XxTv—1y
which is the best linear unbiased predictor (BLUP).

In practice, V' is not known, we can plug in the estimate of V (and X,)
from REML and get the predictor

4=, ZTV I - X(XTV1X) 1 XTV -y



