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Today’s topics:

• GLMM: generalized linear mixed effect model
• Binomial response: logistic-normal models 
• Poisson GLMM 
• Marginal likelihood MLE for GLMM: Gauss-Hermite Quadrature
• Generalized estimating equations

• Example: modeling correlated survey responses



LMM V.S. GLMM

If we ignore the random effects but use a regular linear model
• We underestimate the uncertainty in !𝛽
• Our estimates for 𝛽 will still be consistent



LMM V.S. GLMM

If we ignore the random effects but use a regular GLM model
• Our estimates for 𝛽 will be biased
• The uncertainty in !𝛽 will also be wrongly evaluated (likely under-estimated)



GLMM for binary response:
Latent variable threshold model with random effects
We can view GLMM for binary responses as latent variable threshold 
model with random effects

We assume that



Example: probit model with random intercept

• Latent continuous variable follow LMM:
𝑦!"∗ = 𝑋!"$𝛽 + 𝑢! + 𝜖!", 𝜖!"~𝑁 0,1 , 𝑢!~𝑁 0, 𝜎%&

• Conditional mean model for the observed 𝑦!"
𝑃 𝑦!" = 1 𝑢! = Φ(𝑋!"$𝛽 + 𝑢!)

• Marginal mean model for the observed 𝑦!"

𝑃 𝑦!" = 1 = 𝑃 𝑢! + 𝜖!" ≤ 𝑋!"$𝛽 = Φ
𝑋!"$𝛽

1 + 𝜎%&



Example: probit model with random intercept

• This indicates that the marginal probabilities still follow a probit link, 
but with

𝛽'()*+,(- =
𝛽

1 + 𝜎%&

• If we ignore the random effects but fit a probit GLM, our estimates for 
𝛽 will be biased by 1/ 1 + 𝜎%& 

• We still underestimate the uncertainty in !𝛽'()*+,(- (as we ignore the 
fact that samples are correlated)



GLMM for binomial response

Logistic-normal model:

where 𝑢!~𝑁(0, Σ%) and are independent

• Example: item-response models



Marginal GLM for Logistic–normal model

• We have a similar approximation for the logistic-normal model if we 
only have random intercept



Marginal GLM for binary GLMM

• Why does the 𝛽 in the random effect model typically larger than the 
coefficient 𝛽!"#$%&"' in the corresponding marginal GLM?



Some properties

• Conditional independence

• Latent class model

• Marginal correlation

• For random intercept Binary GLMM, the correlation between two 
responses within the same group is still positive (same as LMM)



Poisson GLMM

• For the marginal model, the link function is still log-linear
• The coefficient 𝛽!"#$%&"' = 𝛽 except for the intercept
• Marginal GLM is not longer a Poisson GLM à over-dispersion due to the 

random effect term (Agresti book Chapter 9.4.2)
𝑣𝑎𝑟 𝑦() = 𝐸 𝑦() + 𝐸 𝑦()

*
𝑒+!" − 1



Matrix form of the GLMM model

• Similar to LMM, denote the model for the whole dataset
𝑔 𝐸[𝑦|𝑢] = 𝑋𝛽 + 𝑍𝑢 

• Number of groups is 𝑛

• 𝑦(, 𝑋(, 𝑍(, 𝑢( are the response, covariates and random effects for group 𝑖
• Can also allow multiple grouping structures (hierarchical or not)



Fitting GLMM

• Fitting GLMM is more challenging than fitting LMM as the marginal 
distributions of the responses 𝑦!" typically do not have closed forms

• Typical methods
• Full Bayes approach MCMC
• EM algorithm (not easy)
• Approximate the marginal likelihood numerically
• Generalized estimating equations (GEE): fitting the marginal model



Laplace approximation

• 𝑙 𝑢 = log 𝑓 𝑦 𝑢, 𝛽 + log[𝑓(𝑢, Σ%)] which is the log density of the 
joint likelihood of 𝑦 and 𝑢

• For canonical link, ̇𝑙 𝑢 = .!(012[0|%])
7(8)

− Σ%19𝑢



Gauss-Hermite Quadrature



Generalized estimating equations (GEE)

• A way to estimate the marginal model under dependence across 
observations

• For group 𝑖, the response is 𝑦! = (𝑦!9, ⋯ , 𝑦!:")
• Denote the marginal means as 𝜇! = 𝐸(𝑦!), marginal GLM:

𝑔 𝜇!" = 𝑋!"$𝛽

• Elements in 𝑦! are correlated due to shared random effects, we just 
model a working covariance matrix (may not be true): 

var 𝑦! = 𝑉! 𝛼 = 𝑣(𝜇!)

• Responses across groups are independent



Generalized estimating equations (GEE)
• Generalized estimating equation for 𝛽

• Compare with estimating equation for 𝛽 for independent responses

• We also need a generalized estimating equation for scale parameters 𝛼
• We can use moment equations as before

∑(,-. (𝑦( − 𝜇()/𝑉( 𝛼 0-(𝑦( − 𝜇() = 𝑁 − 𝑝  

• Typically, we assume the correlation matrix is shared across groups 
• Can use Sandwich estimator to robustly estimate the variance of >𝛽



Example: modeling correlated survey responses

• Check Example9 R notebook


