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Today’s topics:

e GLMM: generalized linear mixed effect model
* Binomial response: logistic-normal models
* Poisson GLMM

* Marginal likelihood MLE for GLMM: Gauss-Hermite Quadrature
* Generalized estimating equations

* Example: modeling correlated survey responses



LMM V.S, GLMM

For LMM, the form is
Yis = ij;ﬁ + qu;uz + €55

with u; and €;5 random. With the typical assumption that E(u;) = E(e;5) =
0, we would also have marginally

E(yzs) — XZ;

If we ignore the random effects but use a regular linear model
* We underestimate the uncertainty in 5
* Our estimates for § will still be consistent



LMM V.S, GLMM

However, for GLMM, the model is
9lE(yis | wi)] = XioB + Zigu,

when the link function g is non-linear, marginally after integrating out the
randomness in u; we would have

9lE(yis)] # X5

If we ignore the random effects but use a regular GLM model
* Our estimates for  will be biased
 The uncertainty in B will also be wrongly evaluated (likely under-estimated)



GLMM for binary response:
Latent variable threshold model with random effects

We can view GLMM for binary responses as latent variable threshold
model with random effects

We assume that
P(yis = 1| w) = F(X.LB+ ZLw)

we assume there is a latent y, where
* T T
Yis — Xzsﬁ + Zz’sui + €is

where €;5 are i.i.d. following some distribution (normal, logistic, ...)

and we have
1 iy, >=0
Yis =

0 else



Example: probit model with random intercept

e Latent continuous variable follow LMM:
y;s — XL’I.;:B T U; + €is» EiSNN(OJ]-)J uiNN(OJ 0-1%)

* Conditional mean model for the observed y;,
P(yis = 1lu) = dX5B + w;)

* Marginal mean model for the observed y;

xT
P(is=1 =Py + €5 < XisB) = @ ( J1i 2)
O-u




Example: probit model with random intercept

T
Xz's

g(P(yis — 1)) — \/m

 This indicates that the marginal probabilities still follow a probit link,
but with

ﬁmarginal — 'B
J1+ 02

* |f weignore the random effects but fit a probit GLM, our estimates for

B will be biased by 1/y/1 + 02
*  We still underestimate the uncertainty in f™ar81al (35 we ignore the
fact that samples are correlated)




GLMM for binomial response

Logistic-normal model:
logit[P(yis = 1 | u;)] = X1B8 + ZEu;

where u;~N (0, X,,) and are independent

 Example: item-response models

Item response models: y;; the yes/no (correct/incorrect) re-
sponse of subject 7 on question j

logit[P(yi; | ui)] = Bo + Bj + wi



Marginal GLM for Logistic—-normal model

 We have a similar approximation for the logistic-normal model if we
only have random intercept

xXT
V1+oZ/c?

g(P(yis = 1)) »

where c =~ 1.7



Marginal GLM for binary GLMM

* Why does the [ in the random effect model typically larger than the
coefficient f™arginal iy the corresponding marginal GLM?

P(y=1)
1.0

— GLMM
- - Marginal model

0.0 X

Figure 9.2 Logistic random-intercept GLMM, showing its subject-specific curves and the
population-averaged marginal curve obtained at each x by averaging the subject-specific prob-
abilities.



Some properties

 Conditional independence

P(yii =01, ,Yid, = 0q, | s = ux) = P(y;1 = a1 | s = uy) - - - P(Yiq, = g, | us = uy)

e Latent class model

 Marginal correlation

cov(Yis, Yik) = E[cov(Yis, Yir | wi)] + cov[E(yis | wi), E(yir | us)]
= 0+ cov[F(XLB + ZLu;), F(XL B+ ZL u;)]

 Forrandom intercept Binary GLMM, the correlation between two
responses within the same group is still positive (same as LMM)

Cov(yisayik) > 0



Poisson GLMM

log[E (yis | wi)] = X568+ Zu

Equivalently,

ZLru; XIB

Elyis |u;] =e e is

For the random-intercept model where Z;, = 1 and u; ~ N(0,02), we have

T 2
B(yis) = X58+%/2

* For the marginal model, the link function is still log-linear

e The coefficient g™arginal — @ except for the intercept

* Marginal GLM is not longer a Poisson GLM —> over-dispersion due to the
random effect term (Agresti book Chapter 9.4.2)

var(yis) = E(yis) + (E(yiS))z(eaa o 1)



Matrix form of the GLMM model

Similar to LMM, denote the model for the whole dataset
g(E[ylu]) = XB + Zu

Y1 X1 (201 ZO2 8\ U €1
Al I R N R PP R €=

Number of groupsisn

Vi, Xi, Z;, U; are the response, covariates and random effects for group i
Can also allow multiple grouping structures (hierarchical or not)



Fitting GLMM

* Fitting GLMM is more challenging than fitting LMM as the marginal
distributions of the responses y;. typically do not have closed forms

 Typical methods
e Full Bayes approach MCMC
e EM algorithm (not easy)
 Approximate the marginal likelihood numerically
 Generalized estimating equations (GEE): fitting the marginal model

The marginal likelihood

(8, u; 9) = £(3; 6, 0) /fylu ) du



Laplace approximation

Laplace approximation: the marginal density of our data has the form

W dy ~ [ el@o)+31" (wo)(u—u0)? g, — pl(uo) 2
1" (uo) ]

Here ug is the global maximum of [(u) satisfying I'(ug) = 0. Laplace ap-
proximation can be used when u is multi-dimensional.

o I(u) =log|f(ylu,B)] + log[f (u, Z,)] which is the log density of the
joint likelihood of y and u
z" (y—E[y|ul)

v-1
() 2y U

e For canonical link, I(u) =



Gauss-Hermite Quadrature

Gauss-Hermite Quadrature methods: approximate the integral by a weighted
sum

/h(u)exp(—uz)du 2 Z cxh(sk)
k=1

e the tabulated weights {cx} and quadrature points {sx} are the roots
of Hermite polynomials.

e The approximation is more more accurate with larger q. For more
details, read chapter 9.5.2.

e The approximated likelihood is maximized with optimization algo-
rithms such as Newton’s method



Generalized estimating equations (GEE)

A way to estimate the marginal model under dependence across
observations

* Forgroupi, theresponseisy; = (¥i1,***, Vin;)
* Denote the marginal means as yu; = E(y;), marginal GLM:
9(is) = Xl?.;

* Elementsin y; are correlated due to shared random effects, we just
model a working covariance matrix (may not be true):

var(y;) = Vi(a) = v(y;)

* Responses across groups are independent



Generalized estimating equations (GEE)

* Generalized estimating equation for
n

Z(a/"i/ op) vu) i — ) =0
i=1

 Compare with estimating equation for § for independent responses

oL (yi — ps)zsy 1 —
1i(5,9) = 55 =2 a(uid) o)

)

* We also need a generalized estimating equation for scale parameters
 We can use moment equations as before

i —u)Vi(@ My —w) =N-—p

* Typically, we assume the correlation matrix is shared across groups
«  Can use Sandwich estimator to robustly estimate the variance of 3



Example: modeling correlated survey responses

 Check Example9 R notebook



