STAT347: Generalized Linear Models Lecture 14

Winter, 2024 Jingshu Wang

Today's topics:

- Survival analysis
 - Examples of survival analysis datasets
 - Basic concepts in survival analysis: survival function, hazard rate, censoring
 - Kaplan-Meier estimator of the survival function
 - Log-rank test

Example 1: Northern California Oncology Group (NCOG) study

- Two treatments for head and neck cancer: Arm A: Chemotherapy; Arm B: Chemotherapy + Radiation
- Data: censored survival time in days

'+' indicate patients still alive on their final day of observation

	Arm A: Chemotherapy									
7	34	42	63	64	74 +	83	84	91	108	112
129	133	133	139	140	140	146	149	154	157	160
160	165	173	176	185 +	218	225	241	248	273	277
279 +	297	319 +	405	417	420	440	523	523 +	583	594
1101	1116 +	1146	1226 +	1349 +	1412 +	1417				
Arm B: Chemotherapy+Radiation										
37	84	92	94	110	112	119	127	130	133	140
146	155	159	169 +	173	179	194	195	209	249	281
319	339	432	469	519	528 +	547 +	613 +	633	725	759 +
$817 \\ 2297 +$	1092 +	1245 +	1331 +	1557	1642 +	1771 +	1776	1897 +	2023 +	2146 +

Example 1: Northern California Oncology Group (NCOG) study

- Two treatments for head and neck cancer: Arm A: Chemotherapy; Arm B: Chemotherapy + Radiation
- Data: censored survival time in days
 + indicate patients still alive on their final day of observation

Main questions:

- Is the Arm B more effective treatment than Arm A?
- Instead of just compare the mean survival time, we would like to know more information about the survival time distribution (the survival curve)
- How to deal with "lost to follow-up" (censoring)?

Example 2: duration of nursing home stay

- Goal: assess the effects of different financial incentives on length of
- stay.
- Treated nursing homes received higher per diems for Medicaid patients, and bonuses for improving a patient's health and sending them home.
- Study included 1601 patients admitted between May 1, 1981 and April 30, 1982.

Measured variables:

- LOS Length of stay of a resident (in days)
- AGE Age of a resident
- RX Nursing home assignment (1:bonuses, 0:no bonuses)
- gender, age, married or not, heath status
- CENSOR Censoring indicator (1:censored, 0:discharged)

Goal: treatment effect on stay length after adjusting for other covariates and censoring?

Basic concepts

- Survival time: T is a random non-negative variable, the duration from the start of treatment to death.
 - Continuous: T has a density function f(t)
 - Discrete: $T \in \{0, 1, 2, 3, \dots\}, f_i = P(T = i)$
- Survival function/curve: S(t) = P(T > t)
 - Continuous: $S(t) = \int_t^\infty f(t')dt'$
 - Discrete: $S_i = \sum_{j>i} f_j$
- Hazard rate/function: h(t) = f(t)/S(t) (or $h_i = f_i/s_{i-1}$ for discrete T)
- Accumulative hazard function: $H(t) = \int_0^t h(t)$ (or $H_i = \sum_{j \le i} h_j$ for discrete T)

Basic concepts

- The survive function and hazard rate provide more information than E(T).
- An important fact is that knowing one of the three functions of H(t), h(t) and S(t) will enable inferring the other two functions.
- For discrete *T*:

$$S_i = \prod_{j=0}^{i} P[T \ge j+1 \mid T \ge j] = \prod_{j=0}^{i} (1-h_j)$$

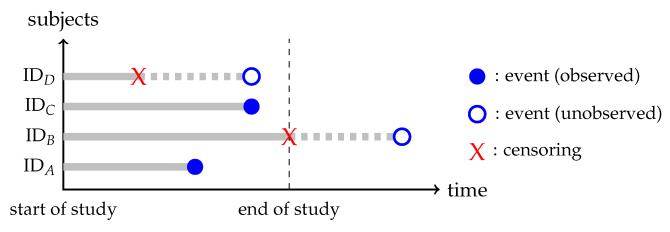
• For continuous *T*:

$$S(t) = e^{-H(t)}$$

Concept of censoring

Censoring

- We may not be able to observe every T_i where *i* is an individual.
- Censoring can occur when
 - the study ends, some individual have not had the event yet (still alive)
 - Some individuals dropout or get lost in the middle of the study.



- Typically, individuals do not enter the study at the same time
 - Not a concern as T_i is the length of duration
 - can adjust for starting time by add it as a covariate

Concept of censoring

Denote each sample's censoring time as C_1, C_2, \dots, C_n . Then what we can actually observe for each sample are $Y_i = \min(T_i, C_i)$ and an indicator of whether censoring occurs:

$$\delta_i = \begin{cases} 0 & \text{if } T_i \leq C_i \text{ (observed death)} \\ 1 & \text{Otherwise} \end{cases}$$

When each sample also has its covariate, what we observe can be denoted as (Y_i, X_i, δ_i) for $i = 1, 2, \dots, n$.

Throughout the class, we only consider **non-informative censoring**, which is basically requiring

$$T_i \perp C_i \mid X_i$$

which means that the censoring time is not associated with the survival time, at least conditioning on other known covariates X_i .

Estimating the survival function

- We consider the scenario with no observed covariates X_i and the survival time T_i are i.i.d.
- A non-parametric way with no censoring

$$\widehat{S}_n(t) = \frac{1}{n} \sum_i \mathbb{1}_{T_i > t}$$

- This does not work if there are censored data
- Example:

survival times: 1, 1, 2, 2+, 3+, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23 We don't know how to estimate *S*(3) from the empirical cdf approach

Kaplan-Meier estimator

- Assume we have discrete time points
- Make use of the equation:

$$S_i = \prod_{j=0}^{i} P[T \ge j+1 \mid T \ge j] = \prod_{j=0}^{i} (1-h_j)$$

- How to estimate a hazard rate h_i ? For time bin i, assume
 - r_i samples that are still alive at the beginning of this time bin
 - d_i death during this time bin
 - c_i drop-outs at the end of this time bin
 - No drop-outs during thins time bin

$$d_i \sim \text{Bernoulli}(r_i, h_i) \qquad \widehat{h}_i = \frac{d_i}{r_i}$$

• Kaplan-Meier estimator

$$\widehat{S}_i = \prod_{j \le i} (1 - \widehat{h}_j)$$

Kaplan-Meier estimator

- For continuous *T*, we can discretize time into bins and make the bin size smaller and smaller
- The Kaplan-Meier estimator in the limiting case becomes

$$\widehat{S}(t) = \prod_{j:\tau_j \le t} \frac{r_j - d_j}{r_j}$$

where $\{\tau_1, \tau_2, \cdots, \tau_K\}$ is the set of K distinct uncensored failure times observed in the sample, d_j is the number of death at τ_j and r_j is the total number of people who are at risk right before τ_j .

• The above formula also works for discrete time points

Variance of $\hat{S}(t)$

• The estimates $\hat{h}_1, \dots, \hat{h}_K$ are not independent: $r_{j+1} = r_j - d_j - c_j, \quad \hat{h}_i = \frac{d_i}{r_i}$

The Greenwood formula for estimating the uncertainty in $\widehat{S}(t)$:

$$\log \widehat{S}(t) = \sum_{j:\tau_j \le t} \log(1 - \widehat{h}_j)$$

Using the Delta method

$$\operatorname{og} \widehat{S}(t) \approx \sum_{j:\tau_j \leq t} \left[\log(1 - h_j) - \frac{1}{1 - h_j} (\widehat{h}_j - h_j) \right]$$
$$= \operatorname{Const} - \sum_{j:\tau_j \leq t} \frac{1}{1 - h_j} (\widehat{h}_j - h_j)$$

• Though the estimates $\hat{h}_1, \cdots, \hat{h}_K$ are not independent, we always have

$$E[\hat{h}_i - h_i | \hat{h}_1, \cdots, \hat{h}_{i-1}] = 0$$

- The partial sums form a martingale
- $\hat{h}_1, \cdots, \hat{h}_K$ are pairwise uncorrelated

Variance of $\hat{S}(t)$

• When calculating the variance, we can treat $\hat{h}_1, \dots, \hat{h}_K$ as "independent" and K as fixed.

$$\widehat{\operatorname{Var}}\left(\log\widehat{S}(t)\right) \approx \sum_{j:\tau_j \le t} \left(\frac{1}{1-\widehat{h}_j}\right)^2 \widehat{\operatorname{Var}}(\widehat{h}_j)$$
$$= \sum_{j:\tau_j \le t} \frac{\widehat{h}_j}{(1-\widehat{h}_j)r_j} = \sum_{j:\tau_j \le t} \frac{d_j}{(r_j - d_j)r_j}$$

Using Delta method on $\widehat{S}(t) = e^{\log \widehat{S}(t)}$, we get

$$\widehat{\operatorname{Var}}\left(\widehat{S}(t)\right) = [\widehat{S}(t)]^2 \widehat{\operatorname{Var}}\left(\log(\widehat{S}(t))\right)$$
$$= [\widehat{S}(t)]^2 \sum_{j:\tau_j \le t} \frac{d_j}{(r_j - d_j)r_j}$$

• Under some conditions, we can also have CLT of $\log \hat{S}(t)$

Comparison between two survival survival curves

- In the NCOG data, we may want to know if the whole survival curve of Arm B is significantly larger than the whole curve of Arm A.
- Here, we consider testing for the simple null hypothesis

 $H_0: S_1(t) \equiv S_2(t)$

This tests if the two curves are exactly the same

The Cochran-Mantel-Haenszel log-rank test

- Assume we have discrete time points
- For each discrete survival time *i*,
 - We observe r_{i1} and r_{i2} samples that are still alive at the beginning of this time bin for each group respectively
 - Observe d_{i1} and d_{i2} death during this time bin for two groups respectively.
 - Assume that drop-outs happen at the end of each time bin. (so we don't need to consider it)

	death	alive	total at risk
Group 1	d_{i1}	$r_{i1} - d_{i1}$	r_{i1}
Group 2	d_{i2}	$r_{i2} - d_{i2}$	r_{i2}
Total	d_i	$r_i - d_i$	r_i

The Cochran-Mantel-Haenszel log-rank test

The Cochran-Mantel-Haenszel log-rank test is to test whether the group has no effect on death rate in each table. If the margins of this table are considered fixed, then under H_0 , d_{i1} follows a Hypergeometric distribution, with (check the Wikipedia page)

$$E(d_{i1}) = \frac{d_i}{r_i} r_{i1}, \quad \operatorname{Var}(d_{i1}) = \frac{r_{i1} r_{i2} d_i (r_i - d_i)}{r_i^2 (r_i - 1)}$$

The log-rank test statistics is

$$X_{CMH}^2 = \frac{\left\{\sum_i (d_{i1} - r_{i1}d_i/r_i)\right\}^2}{\sum_i r_{i1}r_{i2}d_i(r_i - d_i)/[r_i^2(r_i - 1)]}$$

• Compare X_{CMH}^2 with a χ_1^2 distribution to get p-value

The Cochran-Mantel-Haenszel log-rank test

For continuous survival time, we can make the bin finer and finer, and in the limit, the Cochran-Mantel-Haenszel log-rank test statistics is

$$X_{CMH}^{2} = \frac{\left\{\sum_{j=1}^{K} (d_{j1} - r_{j1}d_{j}/r_{j})\right\}^{2}}{\sum_{j=1}^{K} r_{j1}r_{j2}d_{j}(r_{j} - d_{j})/[r_{j}^{2}(r_{j} - 1)]}$$

where $\{\tau_1, \tau_2, \cdots, \tau_K\}$ is the set of K distinct uncensored failure times observed in the sample including both two groups, d_{j1} and d_{j2} are the number of death at τ_j for each group respectively, and r_{j1} and r_{j2} are the total number of people who are at risk right before τ_j for each group respectively. $r_j = r_{j1} + r_{j2}$ and $d_j = d_{j1} + d_{j2}$.

Some remarks

- The asymptotics work when the total number of samples n goes to ∞ , so we can have either a fixed K or a growing number of K
- For each 2×2 table, there can be many different tests for the group effect or death, for example testing for the odds ratio being 1 with a logistic regression, the challenge is to combine K different tables and have valid inference when each y_j is very small (exactly 1 when there is no tie).
- The CMH log-rank test is powerful when the survive curves does not across each other. It is most powerful when $h_2(t) = \alpha h_1(t)$
- the Log-rank test is non-parametric, and only depends on the ranks

Data example

• Check Example10 R notebook