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Today’s topics:

 Survival analysis

« Examples of survival analysis datasets

« Basic concepts in survival analysis: survival function, hazard rate,

censoring
« Kaplan-Meier estimator of the survival function

» Log-rank test



Example 1:
Northern California Oncology Group (NCOG) study

Two treatments for head and neck cancer:
Arm A: Chemotherapy; Arm B: Chemotherapy + Radiation

Data: censored survival time in days

‘+’ indicate patients still alive on their final day of observation

Arm A: Chemotherapy

7 34 42 63 64 74+ 83 84 91 108 112
129 133 133 139 140 140 146 149 154 157 160
160 165 173 176 185+ 218 225 241 248 273 277

279+ 297 319+ 405 417 420 440 523 523+ 583 594
1101 1116+ 1146 1226+ 1349+ 1412+ @ 1417
Arm B: Chemotherapy+Radiation

37 84 92 94 110 112 119 127 130 133 140
146 155 159 169+ 173 179 194 195 209 249 281
319 339 432 469 519 528+ 947+ 613+ 633 725 759+
817 1092+ 1245+ 1331+ 1557 1642+ 1771+ 1776 1897+ 2023+ 2146+

2297+



Example 1:
Northern California Oncology Group (NCOG) study

 Two treatments for head and neck cancer:

Arm A: Chemotherapy; Arm B: Chemotherapy + Radiation
 Data: censored survival time in days

+ indicate patients still alive on their final day of observation

Main questions:

* |sthe Arm B more effective treatment than Arm A?

* Instead of just compare the mean survival time, we would like to know
more information about the survival time distribution (the survival

curve)
 How to deal with “lost to follow-up” (censoring)?



Example 2: duration of nursing home stay

* Goal: assess the effects of different financial incentives on length of

e stay.

* Treated nursing homes received higher per diems for Medicaid patients, and bonuses for
improving a patient's health and sending them home.

e Study included 1601 patients admitted between May 1, 1981 and April 30, 1982.

Measured variables:

* LOS - Length of stay of a resident (in days)

 AGE - Age of a resident

e RX-Nursing home assignment (1:bonuses, 0:no bonuses)
 gender, age, married or not, heath status

* CENSOR - Censoring indicator (1:censored, O:discharged)

Goal: treatment effect on stay length after adjusting for other covariates and censoring?



Basic concepts

e Survival time: 7'is a random non-negative variable, the duration from
the start of treatment to death.

— Continuous: 7" has a density function f(t)
— Discrete: T € {0,1,2,3,---}, fi = P(T =1)

e Survival function/curve: S(t) = P(T > t)

— Continuous: S(t) = [ f(t')dt’
— Discrete: S; = Zj>i i
e Hazard rate/function: h(t) = f(t)/S(t) (or h; = fi/si—1 for discrete
T)

e Accumulative hazard function: H(t) = fg’ h(t) (or H; = ) _;<; h; for
discrete T') B



Basic concepts

« The survive function and hazard rate provide more information than E(T).

« An important fact is that knowing one of the three functions of H(t), h(t)
and S(t) will enable inferring the other two functions.

 For discrete T

7 7

Si=[[PIT>j+1|T>j=]]1-h)

=0 =0

 For continuous T

S(t) =e 7Y



Concept of censoring

Censoring
* We may not be able to observe every T; where i is an individual.

e Censoring can occur when

* the study ends, some individual have not had the event yet (still alive)
* Some individuals dropout or get lost in the middle of the study.

subjects
1 |
IDp X O | @ : event (observed)
|
IDc ® i QO : event (unobserved)
IDg X O .
! X :censoring
ID4 ® !
' > time
start of study end of study

* Typically, individuals do not enter the study at the same time
* Notaconcern as T; is the length of duration
e can adjust for starting time by add it as a covariate



Concept of censoring

Denote each sample’s censoring time as C'1,Co, - -- ,C,,. Then what we can
actually observe for each sample are Y; = min(7;, C;) and an indicator of
whether censoring occurs:

'l::

0 if T; < C; (observed death)
1  Otherwise

When each sample also has its covariate, what we observe can be denoted
asi (¥ Xii0p) HOEB=1, 200 =

Throughout the class, we only consider non-informative censoring, which
is basically requiring

which means that the censoring time is not associated with the survival
time, at least conditioning on other known covariates X;.



Estimating the survival function

* We consider the scenario with no observed covariates X; and the survival time T; are
ii.d.

* A non-parametric way with no censoring

~ 1
Sn (t) — E Z 1T7;>t

* This does not work if there are censored data

e Example:
survival times: 1, 1, 2, 2+, 3+,4,4,5,5, 8,8, 8, 8, 11, 11, 12,12, 15,17, 22, 23
We don't know how to estimate S(3) from the empirical cdf approach



Kaplan-Meier estimator

 Assume we have discrete time points
 Make use of the equation:

S;i=|]PIT=j+1|T=4=]]Q-hy)
=0 §=0
* How to estimate a hazard rate h;? For time bin i, assume

* 71; samples that are still alive at the beginning of this time bin
* d; death during this time bin

* (; drop-outs at the end of this time bin
* No drop-outs during thins time bin

d; ~ Bernoulli(r;, h;) B =—
« Kaplan-Meier estimator i



Kaplan-Meier estimator

 For continuous T, we can discretize time into bins and make the bin size smaller and
smaller

* The Kaplan-Meier estimator in the limiting case becomes

Sm= [ L%

&
JiTi <t :

where {7y, 79, - T} is the set of K distinct uncensored failure times ob-
served in the sample, d; is the number of death at 7; and r; is the total
number of people who are at risk right before 7;.

 The above formula also works for discrete time points



Variance of S(t)

* The estimates le, cee EK are not independent: 17,4, = 1; — d; — ¢j, h; =

The Greenwood formula for estimating the uncertainty in S (5):

log S(t) = 'Z log(1 — h;)

Using the Delta method

& i .z
log S(t) ~ Z llog(l — h]) — T (hj — hj)]
g <t 4
j
= Const — » - g (i = )

* Though the estimates fll, e

J:T; <t

hy are not independent, we always have
[i’\l - hlli;’l' °c, iii—l] — O

* The partial sums form a martingale
e hy, -, hy are pairwise uncorrelated



Variance of S(t)

 When calculating the variance, we can treat fll, e EK as “independent” and K as fixed.

2
Var (log $(1)) = 3~ (1}) Var(h;)

FomEst

Using Delta method on S(t) = el°s S®) | we get
Var (8(t)) = [S(#)*Var (log(S(#)))
- BOF Y 4

rj —dj)r;

Pk

* Under some conditions, we can also have CLT of log S(t)



Comparison between two survival survival curves

* In the NCOG data, we may want to know if the whole survival curve of
Arm B is significantly larger than the whole curve of Arm A.
« Here, we consider testing for the simple null hypothesis
Ho : Sl(t) — Sg(t)
This tests if the two curves are exactly the same



The Cochran-Mantel-Haenszel log-rank test

 Assume we have discrete time points

* For each discrete survival time i,
* We observe 1;; and 1, samples that are still alive at the beginning of this time
bin for each group respectively
* Observe d;; and d;, death during this time bin for two groups respectively.
* Assume that drop-outs happen at the end of each time bin. (so we don’t need to

consider it)
death alive | total at risk
GI“OU.p 1 dil 15l — dﬂ Ti1
GI’OU.p 2 diQ 59 — dz'g T2
Total dz - dz Tr;




The Cochran-Mantel-Haenszel log-rank test

The Cochran-Mantel-Haenszel log-rank test is to test whether the group
has no effect on death rate in each table. If the margins of this table are
considered fixed, then under Hy, d;; follows a Hypergeometric distribution,
with (check the Wikipedia page)

d; P —d;
B(dn) = Tria,  Var(di) = 57— )

The log-rank test statistics is

x2 o {3°:(din — randi/r2)}°
CME S rariads (ri — di) /[r2 (ri — 1)]

 Compare Xz,y With a y# distribution to get p-value



The Cochran-Mantel-Haenszel log-rank test

For continuous survival time, we can make the bin finer and finer, and in
the limit, the Cochran-Mantel-Haenszel log-rank test statistics is

2o {Zﬁil(dj —ledj/rj)}g
Gl = Zszl T‘jlrjgdj (Tj = dj)/[rjg'(rj B 1)]

where {11, 7o,---Tx } is the set of K distinct uncensored failure times ob-
served in the sample including both two groups, d;1 and d;2 are the number
of death at 7; for each group respectively, and r;; and rj92 are the total num-
ber of people who are at risk right before 7; for each group respectively.
T = Tj1 +Tj2 and dj = djl + djg.




Some remarks

e The asympotitics work when the total number of samples n goes to
00, so we can have either a fixed K or a growing number of K

e For each 2 x 2 table, there can be many different tests for the group
effect or death, for example testing for the odds ratio being 1 with a
logistic regression, the challenge is to combine K different tables and
have valid inference when each y; is very small (exactly 1 when there
is no tie).

e The CMH log-rank test is powerful when the survive curves does not
across each other. It is most powerful when ho(t) = ahy(t)

e the Log-rank test is non-parametric, and only depends on the ranks



Data example

* Check Examplel0 R notebook



