STAT347: Generalized Linear Models
 Lecture 15

Winter, 2024
Jingshu Wang

Today's topics:

- Proportional hazard regression model
- Model setup
- Partial likelihood
- Estimation and inference with partial likelihood

Dealing with covariates in survival analysis

- Evaluate how covariates are associated with the survival time
- Observed data: $\left(Y_{s}, X_{s}, \delta_{s}\right)$ for $s=1,2, \ldots, n$ observations

$$
Y_{s}=\min \left(T_{s}, C_{s}\right), \delta_{s}=1_{C_{s}<T_{s}}
$$

- Generalize from the 2X2 table in log-rank test where X_{s} is just a group indicator
- For each discrete survival time i,
- We observe $r_{i 1}$ and $r_{i 2}$ samples that are still alive at the beginning of this time bin for each group respectively
- Observe $d_{i 1}$ and $d_{i 2}$ death during this time bin for two groups respectively.

	death	alive	total at risk
Group 1	$d_{i 1}$	$r_{i 1}-d_{i 1}$	$r_{i 1}$
Group 2	$d_{i 2}$	$r_{i 2}-d_{i 2}$	$r_{i 2}$
Total	d_{i}	$r_{i}-d_{i}$	r_{i}

$$
\begin{aligned}
& d_{i k} \sim \operatorname{Binomial}\left(r_{i k}, h_{i k}\right) \\
& h_{i k}=P\left(T_{s}=i \mid S_{s} \geq i, X_{s}=k\right)
\end{aligned}
$$

Proportional hazard model

- Define hazard rate $h_{s}(t)=f_{s}(t) / S_{s}(t)$ for an observation s
- We assume that the hazard

$$
h_{s}(t)=e^{X_{s}^{T} \beta} h_{0}(t)
$$

- The model is proposed by David Cox $(1972,1975)$
- This is a semi-parametric model as we have no assumption on the baseline hazard function $h_{0}(t)$
- X does not include the intercept for identifiablity
- proportional hazard:

$$
\log \left\{\frac{h_{s}(t)}{h_{0}(t)}\right\}=X_{s}^{T} \beta
$$

Proportional hazard model

- Survival function need to be less than 1 , while the hazard rate does not have that constraint.
- The benefit of having a proportional model is that there is no constraint on the range of β to have the hazard rate positive.

$$
h_{s}(t)=e^{X_{s}^{T} \beta} h_{0}(t)
$$

- No parametric assumption on the baseline hazard function $h_{0}(t)$
- Question: how do we estimate the coefficients β without estimating $h_{0}(t)$

Partial likelihood

- For simplicity, assume no ties: exactly one person die at a time (if there are ties, idea is similar but needs some adjustments)
- Denote the risk set $\mathcal{R}(t)=\left\{s: y_{s} \geq t\right\}$: individuals that are still alive at time t
- At time Y_{s} where $\delta_{s}=0$, conditional on the fact that there are exactly 1 person die, the probability of choosing individual s is

$$
L_{s}=\frac{h_{s}\left(y_{s}\right)}{\sum_{l \in \mathcal{R}\left(y_{s}\right)} h_{l}\left(y_{s}\right)}=\frac{e^{X_{s}^{T} \beta}}{\sum_{l \in \mathcal{R}\left(y_{s}\right)} e^{X_{l}^{T \beta}}}
$$

- Partial likelihood:

$$
L=\prod_{s} L_{s}^{1-\delta_{s}}
$$

- It is "partial" because it ignores all the non-events, times when nothing happened or there were losses to follow-up

Partial likelihood

- Constructing the full likelihood: for each sample s, assume we observe $\left(y_{s}, \delta_{s}\right)$. We build a likelihood for each sample conditional on C_{s} (treat C_{s} as fixed):
- If $\delta_{s}=0$, then we observe $T_{s}=y_{s}$, the likelihood is $L_{s}=f\left(y_{s}\right)=$ $S\left(y_{s}\right) h\left(y_{s}\right)$
- If $\delta_{s}=1$, then we only observe $T_{s} \geq y_{s}$, the likelihood is $L_{s}=$ $S\left(y_{s}\right)$

Thus the full likelihood is

$$
L=\prod_{s} L(s)=\prod_{s=1}^{n} S\left(y_{s}\right) h\left(y_{s}\right)^{\delta_{s}}
$$

- Rewrite the full likelihood as

$$
L=\prod_{s=1}^{n} S_{s}\left(y_{s}\right) h_{s}\left(y_{s}\right)^{\delta_{s}}=\prod_{s=1}^{n}\left(\frac{h_{s}\left(y_{s}\right)}{\sum_{l \in \mathcal{R}\left(y_{s}\right)} h_{l}\left(y_{s}\right)}\right)^{\delta_{s}}\left(\sum_{l \in \mathcal{R}\left(y_{s}\right)} h_{l}\left(y_{s}\right)\right)^{\delta_{s}} S_{s}\left(y_{s}\right)
$$

Cox (1972) argued that the first term in this product contained almost all the information about β, while the last two terms contained the information about $h_{0}(t)$, the baseline hazard.

Estimation and inference

The log-likelihood:

$$
l(\beta)=\log L=\sum_{s=1}^{n}\left(1-\delta_{s}\right)\left[X_{s}^{T} \beta-\log \left\{\sum_{t \in \mathcal{R}\left(y_{s}\right)} e^{X_{s}^{T} \beta}\right\}\right]
$$

- Estimate β : solve the score equation $\dot{i}(\beta)=0$
- Statistical inference:
researchers has taken a lot of e ort to show that it has asymptotic distribution (not a trivial result)

$$
\widehat{\beta} \dot{\sim} N\left(\beta, \ddot{l}(\widehat{\beta})^{-1}\right)
$$

Data example

- Continue Example10 R notebook

