STAT347: Generalized Linear Models Lecture 3

Winter, 2024 Jingshu Wang

Today's topics:

Asymptotic distribution of the MLE estimates

• Hypothesis testing for β

• Reading: Agresti Chapter 4.3, Faraway Chapter 8.3

Statistical inference for GLM

```
## Call:
## glm(formula = y ~ weight + factor(color), family = poisson(),
      data = Crabs)
##
##
## Deviance Residuals:
      Min
                10 Median
                                         Max
## -2.9833 -1.9272 -0.5553
                            0.8646
                                      4.8270
##
## Coefficients:
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.04978
                            0.23315 - 0.214
                                              0.8309
## weight
                          0.06811 8.019 1.07e-15 ***
                0.54618
                            0.15371 -1.334
## factor(color)2 -0.20511
                                             0.1821
## factor(color)3 -0.44980
                            0.17574 -2.560 0.0105 *
## factor(color)4 -0.45205
                            0.20844 -2.169 0.0301 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
  (Dispersion parameter for poisson family taken to be 1)
##
      Null deviance: 632.79 on 172 degrees of freedom
## Residual deviance: 551.80 on 168 degrees of freedom
## AIC: 917.1
##
## Number of Fisher Scoring iterations: 6
```

 How do we get the standard error, z value and p-value of the GLM estimates?

 What does the deviance mean in this table?

Asymptotic distribution of \hat{eta}

• The MLE $\hat{\beta}$ is consistent for the true value β_0 when $n \to \infty$ and p is fixed

• Asymptotic normality: when n is large

$$\hat{eta} - eta_0 \stackrel{.}{\sim} N(0, V_{eta_0})$$

where β_0 is the true value of the parameter. $(nV_{\beta_0}) = O(1)$

• As an applied course, we ignore the discussions of the conditions of the above consistency and CLT results, and skip the proofs.

Calculation of V_{β_0}

• Taylor expansion (local linear approximation):

$$0 = \dot{L}(\hat{\beta}) \approx \dot{L}(\beta_0) + \ddot{L}(\beta_0)(\hat{\beta} - \beta_0)$$

Then

$$\hat{\beta} - \beta_0 \approx -\left(\ddot{L}(\beta_0)\right)^{-1} \dot{L}(\beta_0) = -\frac{1}{\sqrt{n}} \left(\frac{\ddot{L}(\beta_0)}{n}\right)^{-1} \left(\frac{\dot{L}(\beta_0)}{\sqrt{n}}\right)$$

Calculation of V_{β_0}

Under appropriate conditions, we have

$$\ddot{L}(\beta_0)/n = \sum_i \ddot{L}_i(\beta_0)/n \to \text{Const.}$$
 (law of large numbers)

$$\frac{\dot{L}(\beta_0)}{\sqrt{n}} = \frac{\sum_i \dot{L}_i(\beta_0)}{\sqrt{n}} \xrightarrow{d} N(0, V) \quad \text{(central limit theorem)}$$

Thus we have

$$V_{\beta_0} = \left(\mathbb{E}\left(\ddot{L}(\beta_0)\right)\right)^{-1} \operatorname{Var}\left(\dot{L}(\beta_0)\right) \left(\mathbb{E}\left(\ddot{L}(\beta_0)\right)\right)^{-1}$$

Calculation of V_{β_0}

- The above calculation also can also be used to find the variance of $\hat{\beta}$ from a general estimating equation $\varphi(\hat{\beta})=0$ (will discuss more in later lectures)
- Property of the likelihood score equation:

$$\operatorname{Thus} \qquad \operatorname{Var} \left(\dot{L}(\beta_0) \right) = \mathbb{E} \left(\left(\frac{\partial L}{\partial \beta} \mid_{\beta = \beta_0} \right)^2 \right) = -\mathbb{E} \left(\ddot{L}(\beta_0) \right)$$

• We also have

$$V_{eta_0}=-\mathbb{E}\left(\ddot{L}(eta_0)
ight)^{-1}$$
 $V_{eta_0}=(X^TWX)^{-1}$ where $W=D^2V^{-1}$

• If we use a canonical link, then $W = \frac{D}{a(\phi)} = V/a^2(\phi)$ (last lecture)

Asymptotic distribution of any function $h(\hat{\beta})$

- $h(\hat{\beta})$ is a consistent estimator of $h(\beta_0)$
- We use Delta method to understand its uncertainty:

$$h(\hat{\beta}) \approx h(\beta_0) + \dot{h}(\beta_0)^T (\hat{\beta} - \beta_0)$$

$$\sqrt{n} \left(h(\hat{\beta}) - h(\beta_0) \right) \to N \left(0, n\dot{h}(\beta_0)^T V_{\beta_0} \dot{h}(\beta_0) \right)$$

• Example: use Delta method to obtain a CI for $\mu_i = g^{-1}(X_i^T\beta_0)$ of any individual i

Hypothesis testing

How to test

$$H_0: A\beta_0 = a_0 \quad V.S. \quad H_1: A\beta_0 \neq a_0$$

- Example: $H_0: \beta_1 = 0$ V.S. $H_1: \beta_1 \neq 0$
- We will introduce three types of tests:
 - Wald test
 - Score test
 - Likelihood-ratio test

Wald test

Test statistic

$$T = (A\hat{\beta} - a_0)^T \left[\widehat{\text{Var}}(A\hat{\beta}) \right]^{-1} (A\hat{\beta} - a_0)$$

- $\widehat{\operatorname{Var}}(A\hat{\beta}) = AV_{\hat{\beta}}A^T$
- If a_0 is a scalar, then we can rewrite the test statistic as the Wald statistic

$$z = rac{A\hat{eta} - a_0}{\sqrt{\widehat{ ext{Var}}(A\hat{eta})}}$$

- Under H_0 , when n is large Wald statistic $z \stackrel{.}{\sim} N(0,1)$
- We can also obtain a 95% CI for $A\hat{\beta}$: $[A\hat{\beta} 1.96\sqrt{\widehat{\text{Var}}(A\hat{\beta})}, A\hat{\beta} + 1.96\sqrt{\widehat{\text{Var}}(A\hat{\beta})}]$

Wald test

Test statistic

$$T = (A\hat{\beta} - a_0)^T \left[\widehat{\text{Var}}(A\hat{\beta}) \right]^{-1} (A\hat{\beta} - a_0)$$

•
$$\widehat{\operatorname{Var}}(A\hat{\beta}) = AV_{\hat{\beta}}A^T$$

- If a_0 is in general d-dimensional , then under H_0 , $T \stackrel{.}{\sim} \mathcal{X}_d^2$
- ullet The Wald statistic is the "z-value" in the R GLM output for each coefficient eta_j

A potential issue with Wald test

Let's look at an example of using Wald test for Binomial data $y_i \sim \text{Binomial}(n_i, p_i)$ where we work on the null model:

$$\log \frac{p_i}{1 - p_i} = \log \frac{\mu_i}{n_i - \mu_i} = \beta_0$$

• We can treat the above model as using a canonical link with X being 1, then the asymptotic variance of β_0 is

$$V_{\beta_0} = (\sum_i V_i)^{-1} = (\sum_i n_i p(1-p))^{-1}$$

- An estimate $\hat{V}_{\beta_0} = V_{\hat{\beta}} = [(\sum_i n_i)\hat{p}(1-\hat{p})]^{-1}$ where $\hat{p}_i = \hat{p} = e^{\hat{\beta}}/(1+e^{\hat{\beta}})$
- If we are interested in testing $H_0: p_i \equiv 0.5$ or equivalently $H_0: \beta_0 = 0$, the Wald statistics is

$$z = \hat{\beta} \sqrt{(\sum_{i} n_{i})\hat{p}(1-\hat{p})}$$

A potential issue with Wald test

- An estimate $\hat{V}_{\beta_0} = V_{\hat{\beta}} = [(\sum_i n_i)\hat{p}(1-\hat{p})]^{-1}$ where $\hat{p}_i = \hat{p} = e^{\hat{\beta}}/(1+e^{\hat{\beta}})$
- If we are interested in testing $H_0: p_i \equiv 0.5$ or equivalently $H_0: \beta_0 = 0$, the Wald statistics is

$$z = \hat{\beta} \sqrt{(\sum_{i} n_{i})\hat{p}(1-\hat{p})}$$

- Let's assume we only have one sample
 - Score equation: y np = 0, so $\hat{p} = y/n$
 - If y = 23 and n = 25, then z = 3.31
 - If y = 24 and n = 25, then z = 3.11.
 - We have a smaller z value when we have stronger evidence against the null?

A potential issue with Wald test

• On the other hand, we use the Wald test to directly test for H_0 : $p_i \equiv 0.5$

• In the example with only one sample, we can obtain the asymptotic distribution of \hat{p} directly, which results in another Wald statistic

$$z = \frac{\hat{p} - 0.5}{\sqrt{\hat{p}(1-\hat{p})/n}}.$$

- If y = 23 and n = 25, then z = 7.74
- If y = 24 and n = 25, then z = 11.74.
- So the Wald statistics is not unique and depends on parameterization
- We will discuss this more when we learn binary GLM (Chapter 5.3.3)

Score test

We only discuss the simple case

$$H_0: \beta = \beta_0 \in \mathbb{R}^p$$
 V.S. $H_1: \beta \neq \beta_0$

• Last time we used the property of the likelihood that:

$$\operatorname{Var}\left(\dot{L}(\beta_0)\right) = \mathbb{E}\left(\left(\frac{\partial L}{\partial \beta} \mid_{\beta = \beta_0}\right)^2\right) = -\mathbb{E}\left(\ddot{L}(\beta_0)\right)$$

The score test uses the test statistic

$$T = -\dot{L}(\beta_0)^T \left(\ddot{L}(\beta_0) \right)^{-1} \dot{L}(\beta_0)$$

and makes use of the asymptotic normal distribution of $\dot{L}(\beta_0)$

• Under the null, we have $T \to \mathcal{X}_p^2$ when $n \to \infty$.

Likelihood ratio test

We test for the null

$$H_0: A\beta_0 = a_0 \quad V.S. \quad H_1: A\beta_0 \neq a_0$$

The likelihood ratio test statistic is

$$-2\log\Lambda = -2\left(L(\tilde{eta}) - L(\hat{eta})\right)$$

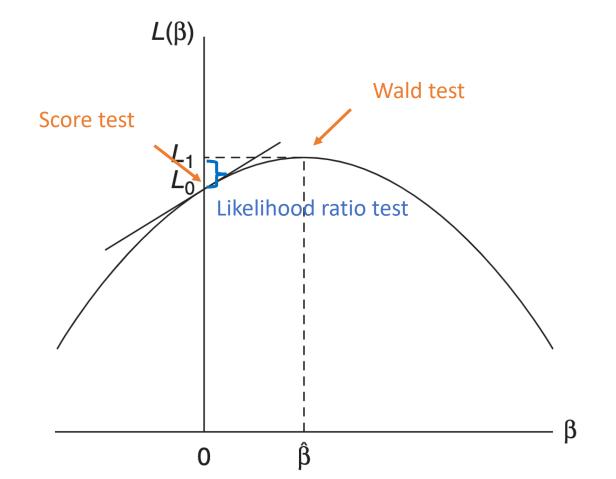
• $\tilde{\beta}$ is the MLE of under the constraint $A\beta=a_0$, and $\hat{\beta}$ is our original MLE without any constraints (under the alternative). As $n\to\infty$, under the null

$$-2\log\Lambda \to \mathcal{X}_d^2$$

Comparison of the three tests

We test for the null

$$H_0: A\beta_0 = a_0 \quad V.S. \quad H_1: A\beta_0 \neq a_0$$



- Three tests are asymptotically equivalent under the null
- We can also construct
 CI from score and
 likelihood ratio tests by
 inverting the tests