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Today’s topics:
» Asymptotic distribution of the MLE estimates
* Hypothesis testing for

* Reading: Agresti Chapter 4.3, Faraway Chapter 8.3



Statistical inference for GLM
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##

Call:

glm(formula = y ~ weight + factor(color),

family = poisson(),

data = Crabs)
peviance Residuals: * How do we get the

Min 10 Median 30 Max
-2.9833 -1.9272 -0.5553 0.8646 4.8270 Standard error’ Z Value

and p-value of the GLM
Coefficients: .
Estimate Std. Error z value Pr(>|z]|) EStImatES?

(Intercept) -0.04978 0.23315 -0.214 0.8309
weight 0.54618 0.06811 8.019 1.07e-15 **%*
factor(color)2 -0.20511 0.15371 -1.334 0.1821
factor(color)3 -0.44980 0.17574 -2.560 0.0105 * .
factor(color)4 -0.45205  0.20844 -2.169 0.0301 * * What does the deviance
—— — L L] ?
Signif. codes: 0 '***' 0,001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 mean in thls table'
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 632.79 on 172 degrees of freedom
Residual deviance: 551.80 on 168 degrees of freedom
AIC: 917.1
Number of Fisher Scoring iterations: 6



Asymptotic distribution of B

* The MLE § is consistent for the true value 8, when n = oo and p is fixed

* Asymptotic normality: when n is large

A

/8_50 ~ N(Oavﬁo)

where [y is the true value of the parameter. (nVjs,) = O(1))

* As an applied course, we ignore the discussions of the conditions of the
above consistency and CLT results, and skip the proofs.



Calculation of V,Bo

* Taylor expansion (local linear approximation):

0 = L(B) ~ L(Bo) + L(Bo)(B — Bo)

e Then

B — Bo = — (i(ﬂo))—l L(Bo) = - (i(ﬁo)> — ( |




Calculation of V,Bo

Under appropriate conditions, we have

L(Bo)/n = Z L;(Bo)/n — Const. (law of large numbers)

L\(/%) = 2 \I}éﬁo) 4 N (0,V) (central limit theorem)

Thus we have

Vg, = (IE (E(ﬁo)))_1Var (1’;(50)) (]E (i(ﬁo)))—l



Calculation of V,Bo

* The above calculation also can also be used to find the variance of 8 from a general
estimating equation go(,B) = 0 (will discuss more in later lectures)

* Property of the likelihood score equation:

L Var(L(f)) =E ((Zg |5:50) ) = —E (L(60))

.o —1
We also have Vs, = —E (L(ﬁo))
Vs, = (XTWX)~! where W = D?V—1

* If we use a canonical link, then W = %(p) =V /a?(¢) (last lecture)



Asymptotic distribution of any function h(ﬁ)

. h(ﬁ) is a consistent estimator of h(f)

* We use Delta method to understand its uncertainty:

A

h(B) = h(Bo) + h(Bo)" (B — Bo)
v (R(B) = h(Bo)) = N (0,nh(Bo)” Vi h(50)

* Example: use Delta method to obtain a Cl for u; = g~ 1(X/ B,) of any
individual i



Hypothesis testing

* How to test

H()ZA,BO:CIQ V.S. HltAﬁ();éao

* Example: Hy: B; =0V.S.H: 5, # 0

* We will introduce three types of tests:
* Wald test
* Score test
* Likelihood-ratio test



Wald test

e Test statistic

T = (AB — ao)T [\73\1”(143)] - (AB — ao)

o Var(Af) = AV;A”

* If ag is a scalar, then we can rewrite the test statistic as the Wald statistic

* Under Hy, when n is large Wald statistic 2 ~ N (0, 1)

* We can also obtain a 95% Cl for AS: [Af — 1.96\/\751‘(AB),AB + 1.96\/\75r(Aﬁ)]



Wald test

e Test statistic

A

T = (AB — ao)T [@(AB)] - (AB — ao)

o Var(AB) = AV;AT

* If ag is in general d-dimensional , then under Hy, T' ~ XC?

* The Wald statistic is the “z-value” in the R GLM output for each coefficient §;



A potential issue with Wald test

Let’s look at an example of using Wald test for Binomial data y; ~ Binomial(n;, p;)
where we work on the null model:

lpi — log Mo — 8,

— D i — My

* We can treat the above model as using a canonical link with X being 1, then the
asymptotic variance of [ is

Vg, = (Eivi)_1= (zinip(l -p)7"

e An estimate ‘750 = V5 =[(2_;mi)p(1 — )]~ where p; = p = e/ (1 +
’)
e

log

e If we are interested in testing Hy : p; = 0.5 or equivalently Hy : By =
0, the Wald statistics is

2= B\/(Z n;)p(1 — p)




A potential issue with Wald test

o A}l estimate Vg, =V = [(D_; n:)p(1 — p)]~! where p; = p =€ /(1 +
e?)

e If we are interested in testing Hj : p; = 0.5 or equivalently Hy : By =
0, the Wald statistics is

s = B\/@ni)ﬁa _5)

* Let’s assume we only have one sample
* Score equation: y-np =0,s0p =y/n
e Ify = 23andn = 25,thenz = 3.31
e Ify = 24andn = 25,thenz = 3.11.
* We have a smaller z value when we have stronger evidence against the null?




A potential issue with Wald test

* On the other hand, we use the Wald test to directly test for Hy: p; = 0.5

* In the example with only one sample, we can obtain the asymptotic
distribution of p directly, which results in another Wald statistic

p—0.5
% = = = :
VB —p)/n
23andn = 25,thenz =7.74
24 and n 25, then z = 11.74.

e Ify
e Ify

* So the Wald statistics is hot unique and depends on parameterization
* We will discuss this more when we learn binary GLM (Chapter 5.3.3)



Score test

* We only discuss the simple case
Hol,BZ,BOERp V.S. Hli,B#IBO

* Last time we used the property of the likelihood that:

Var (L(ﬁo)) —E ((Zg’ |6=Bo)2> = —E (i(ﬂo))

e The score test uses the test statistic

. . ~1 .
T = —L(6o)" (L(ﬁo)) L(Bo)
and makes use of the asymptotic normal distribution of L(S,)
* Under the null, we have T'— X2 when n — oo



Likelihood ratio test

e We test for the null
HO . A,B() = Qo V.S. H1 . Aﬁo 7é ag

* The likelihood ratio test statistic is

—2log A = —2 (L(B) - L(B))

* f3 is the MLE of under the constraint A8 = ag, and 3 is our original MLE without any
constraints (under the alternative). As n = oo, under the null

—2log A — X7?



Comparison of the three tests

e We test for the null
H() . A,B() = Qo V.S. H1 . Aﬁo 7é aop

* Three tests are
asymptotically
equivalent under the
null

|

|

Likelihoold ratio test

* We can also construct
Cl from score and

likelihood ratio tests by
inverting the tests

0 B



