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Today’s topics:

* Deviance analysis
* Model checking with the residuals
* Example: Building a GLM

* Reading: Agresti Chapters 4.4, 4.7, Faraway Chapters 8.3-8.4



Deviance analysis in GLM

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Call:
glm(formula = y ~ weight + factor(color), family = poisson(),
data = Crabs)

Deviance Residuals:
Min 10 Median 30 Max
-2.9833 -1.9272 -0.5553 0.8646 4.8270

Coefficients:

Estimate Std. Error z value Pr(>|z]|)
(Intercept) -0.04978 0.23315 -0.214 0.8309
weight 0.54618 0.06811 8.019 1.07e-15 ***
factor(color)2 -0.20511 0.15371 -1.334 0.1821
factor(color)3 -0.44980 0.17574 -2.560 0.0105 *
factor(color)4 -0.45205 0.20844 -2.169 0.0301 *
Signif. codes: 0 '***' 0,001 '**' 0.01 '*' 0.05 '.' 0.1 ' " 1
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 632.79 on 172 degrees of freedom
Residual deviance: 551.80 on 168 degrees of freedom ™~ j{: (
AIC: 917.1 v

Number of Fisher Scoring iterations: 6

* In linear regression, we use

R2_1_ >y —a)? (s — §)?

Zi(yi —9)? B Zz(y’t —9)?

To evaluate how well the

model fits the data. We have
an analogy in GLM, which is the
deviance analysis.

> Z'L(y’b —7)?

Yi — f1i)?



Definition of deviance

y0—b(6)

Consider density function f(y;0) = e <@  fo(y; ¢) at two values #; and
0>. Measure the “distance” between two distributions:

f(y;61)
f(y;02)

D(0:,05) = 2Eq, {1og } — 9B, {y(0: — 02) — b(61) + b(62)} /a(9)

=2 [/.Ll (91 — 92) — b(el) =t b(92)] /a’(¢)

Remember the 1-to-1 mapping between p and 6, we also write D(u1, pu2) =
D (Hﬂl ) 0#2)

e D(u1,pu2) > 0 and the equality holds only when p; = ps

o Generally, D(u1,p2) # D(u2, p1)
e KL divergence: D(uq, p2)/2

o If f is the normal density, then D(u1, uo) = (1 — p2)?/0?



Residual deviance

e Saturated model: imagine the case that we collect an infinite number of
covariates, then we can perfectly fit the data and obtain fi; = y; for all samples.

* For a particular sample i, Deviance between the saturated model {i; = y; and
another model with u; (corresponding canonical parameter ;)

f(y;61)
f(y;62)

D(6:,05) = 2E,, {log } — 9By, {y(6: — 02) — b(01) + b(62)} /a(9)

=— ") [/1,1(91 = 02) e b(91) =1 b(02)] /a(¢)

2[y;(6,, — 6;) — b(6,,) + b(6;
D(yi;.ui)= [y(yl )a((p)( yl) ( )]

= —2log[f i, ) /f i, 65)]

* 6y, =BT ) [As = b'(6))]




Residual deviance

e Residual deviance (total deviance):
deviance between the fitted saturated model and the proposed model

Dy (y,f) = ZD (Y, i)
:—QZlog[ vi, 0;)/ f (i, yz)]

* Example: for Gaussian linear model D, (y, i) = X.;(y; — fi;)?*/o*



Null deviance

* Null model: the linear model that only includes intercept. Thus,
Hi =H

* MLE estimate of u from the null model willbe i =y = ),;y; /n

 Null deviance: deviance between the fitted saturated model and the null model

ZD(yz‘,ﬁ)

e “R%”in GLM: . D (y, 1)




Deviance analysis for nested models

(1)
Let B = (g@)) where (1) € RP* and X = (X X @),

We call M) with
g(w;) = X(l)ﬁ(l)

a nested model of the full model M where

g(pi) = XB.

* Test for whether the nested model is already enough:
Ho:ﬁ(z) =0



Deviance analysis for nested models

(1)
Let B = (g@)) where (1) € RPt and X = (X(l) X(2)).

We call M) with
g(pi) = XM

a nested model of the full model M where
g(pi) = XB.

Let 3() be the MLE solution of the model M® and 4 be the corre-
sponding estimated expectations of y in the fitted model.

Then,

D (4, i) = Dy (y, 4V) - Dy (y, ) = —2 [L(BV) - L(B)]



Deviance analysis for nested models

Let 3 be the MLE solution of the model M® and () be the corre-
sponding estimated expectations of y in the fitted model.

D, (p, pM) = Dy (y, pV) — Dy (y, ) = —2 [L(B(”) — L(B)]

 Deviance additivity theorem (Efron, Annals of Statistics 1978)
e This is the likelihood ratio between the full and nested models

e Likelihood ratio test:
If both p and p; are fixed, then asymptotically under Hy: ,8(2) =0

D+(y7 ﬂ(l)) o D-I-(ya /J“) — Xz? P1



Deviance analysis table for model comparisons

Say we partition our covariates as
X = (17X(1)7 X(2)7 T 7X(J))

and X ;) € R% . We can sequentially add each partition of covariates into
the model (in some pre-determined order) and understand each partition’s
“relative contribution” with a deviance analysis table.

° B(j ) is the MLE solution of the GLM model with covariates X () =
(17X(1)7 X(2)7 T 7X(]))

o (119 is the corresponding vector of expectations of y = (y1,--- ,¥n) in
the fitted model.



Deviance analysis table in R

Model twice log-likelihood residual deviance difference df Compare with
£ (null) 2L () D (y, i) = 3, D(%i,7)
@(1) 2L(@(1)) D (y, atM) Dy (y, i9) — Dy (y,a")  dy X4,
18(2) 2L(5(2)) D+(y7ﬂ(2)) D+(y7ﬂ(1)) _ D+(y7ﬁ'(2)) d2 X?lz
B(J) 2L(B(J)) D+(y7/1(J)) D-i—(yha(J_D) o D-i—(yaﬂ(J)) dJ X?lJ

* Add variables sequentially to check if larger models are necessary

e Similar to the analysis of variable table in linear regression

* Typically the full model can not be the saturated model as df in a
saturated model is too large



Deviance analysis table

* R output for the election counts example in Lecture 1

> result.glm <- glm(cbind(undercountNumber, votes) ~ pergore + factor(rural) + factor(econ) +
factor(atlanta) + factor(equip), data = gavote, family = "binomial")

> anova(result.glm, test = "LRT")

Analysis of Deviance Table

equip: e volurig metioa, l"JdKkes 1ive vailues Lcvern , Ud-UL (opuriridl scdr, cernrdl couriy), VUo-ru  (opurmnal scdri, precirict courny),
“Paper”,“PUNCH” (punch card)
Model: binomial , link: -].Ogl t econ: the economic level of the county, takes three values “middle”, “poor” and “rich”

perAA: the percentage of African Americans
rural: whether the county is rural or urban
Res ponse: cbind ( undercountNumber , vote S) atlanta: whether the county is part of the Atlanta metropolitan area
gore: number of votes for Al Gore
bush: number of votes for George Bush
Terms added sequential 1y (fl rst to 1GS‘t) other: number of votes for other candidates
votes: total vote counts
ballots: number of ballots issued

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 158 36829

pergore 1 5031.0 157 31798 < 2.2e-16 ***

factor(rural) 1 4197.2 156 27601 < 2.2e-16 *** . . . .

factor(econ) 2 7248.1 154 20353 < 2.2e-16 *** This analysis is reliable only when
factor(atlanta) 1  534.6 153 19818 < 2.2e-16 *** model assumptions for each
factor(equip) 4  4150.5 149 15668 < 2.2e-16 ***

corresponding null hold

Signif. codes: @ ‘***’ 9,001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢’ 1



Model checking with the residuals

* Asin the linear models, we can examine the residuals to help us

check whether a model fits poor or not, and whether there are any
outliers in the observations.

* Three types of residuals
* Pearson residual Yi — [l

€; ’U(ﬂz) ’U(/.ALZ) = V&I‘(yz)

e Standardized residual (similar as in linear regression)
where h;; is the ith diagonal element of the Hy, defined equation
(4.19) of the Agresti chapter 4.4.5.

Ty —



Model checking with the residuals

 Three types of residuals
* Pearson residual Y —

€; ~
v(fL;)

v(i;) = Var(y;)

e Standardized residual (similar as in linear regression)

€;
where h;; is the i¢th diagonal element of the Hy defined equation
(4.19) of the Agresti chapter 4.4.5.

T, =

* Deviance residual

d; = \/D(y;, fu;) x sign(y; — ;)




Residuals examples

* For Gaussian linear model
e Pearson residual

* Deviance residual




Some intuition related to deviance residuals

|II

Deviance residuals are considered more “normal” than Pearson

residuals

Consider deviance residual of i.i.d samples
R = sign(j — p)/D(, ).

It has been shown that R converges to N(0,1) when sample size
n — oo, and has better third order accuracy than corresponding

Pearson residuals

You can check Appendix C of McCullagh and Nelder, Generalized
Linear Models for more math details



Some intuition related to deviance residuals

y ~Gamma(k = 5,u = 5)

Deviance residual

sign(y — u)y/D(y, 1)

Pearson residual
y—u

VYV ()

I I I T I T T

inter= —-0.15 slope= 0.999
inter2= -0.104 slope2= 0.96

gq comparison of deviance residuals (black) with Pearson residuals (red);
Gamma distribution k = 1,0 = 1,n = 5; B = 2000 simulations.



Example: Building a GLM

* Check Example2 R notebook



