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Today’s topics:

• GLM computation

• Binary / Binomial data model
• Data input
• Link functions
• R example

• Reading: Agresti Chapters 4.5, 5.1, Faraway Chapters 2.1, 3.1, 4.1-4.2



GLM computation

• Only discuss the case of 𝑎 𝜙 = 1 to simplify notation
• If 𝑎 𝜙  is not a constant, one can get %𝛽 from the score equations first, and 

then estimate 𝜙 from MLE with %𝛽 plugged in

• Newton’s method
• Fisher scoring method
• Iteratively reweighted least squares (IRLS): equivalent to Fisher scoring



Newton’s method



Newton’s method

• Newton’s method is a general algorithm for optimizing twice-differentiable 
functions.

• Generally, it converges to the global maximum if 𝐿(𝛽) is strongly concave
• If 𝑔(·)	is the canonical link, then 𝐿(𝛽) is concave in 𝛽

• If 𝑔(·) is a general link, then 𝐿(𝛽) is NOT guaranteed to be concave in 𝛽

• If −�̈�(𝛽(")) is not non-negative, then step 𝑡 does not maximize the 
quadratic approximation and Newton’s method may not converge.



Fisher scoring method

• In lecture 2, we showed that −𝔼 �̈�(𝛽) ≽ 0 for any 𝛽. 
• Instead of using the Hessian �̈�(𝛽(")) itself in the second order 

approximation, we use its expectation

 
Each iteration becomes:

• For the canonical link, Fisher scoring = Newton’s method
• For a general link, Fisher scoring works better in practice



Iteratively reweighted least squares
• We can make a connection between the optimization for GLM and weighted least squares estimation. 



Iteratively reweighted least squares (IRLS)

• At the t+1 th iteration, we solve the “approximated score equation”:

which can be considered as a weighted linear regression with observations 𝑧$
(") and 

weight 𝑤$ for each sample 𝑖.

• IRLS is equivalent to Fisher scoring. The 𝑡th step of Fisher scoring satisfy

• Weight matrix 



Binary / binomial data model

• Link function:

• logistic regression: log( %!
&'%!

) = 𝑋$(𝛽 



Data input for binary model

If 𝑋$ are categorical variables, then we may have samples with the same Xi and we can 
group them together

• ungrouped data: each 𝑛$ = 1 and some samples have the same 𝑋$, thus they share 
the same 𝑝$

• a grouped sample <𝑦) for group 𝑘 where all observations in the group share the same 
𝑋$
• Define 𝑛) as the number of binary observations
• The grouped response for group 𝑘 is  

• The grouped data follows the Binomial distribution because we assume that the 
samples are independent within each group



Likelihood for grouped and ungrouped data

• The likelihood is not the same between the grouped data and 
ungrouped data. However, the log-likelihood function only differs by a 
constant, thus the GLM solution does not change.



Link function for binary / binomial GLM

• If 𝑔 is a one-to-one mapping and continuous function, then 𝑔'& should 
be monotone.

• one natural choice of 𝑔'& is to make it as a cdf of some distribution.
• Denote 𝐹 𝑧 = 𝑔'&(𝑧) as some cdf function

• Let 



Latent variable threshold models

• Denote 𝐹 𝑧 = 𝑔'&(𝑧) as some cdf function

• Let 
• Then

• This is called a latent variable threshold models and 𝑋$(𝛽 − 𝜖$ are 
the “latent variables”

• It does not make any essential modeling difference choosing the 
cutoff to be 0 or any other value 𝜏



Latent variable threshold models



The probit link



The logit link



The identity link



The log-log link
• All previous links assume a symmetric 𝜖$ around 0
• A corresponding restriction is that the response curve is symmetric at 0.5
• We should use some other link functions if this assumption is severely 

violated

• With the log-log link, 𝑝$ approaches 0 sharply but approaches 1 slowly



The complementary log-log link
• With a complementary log-log link, 𝑝$ approaches 1 sharply but approaches 0 

slowly
𝑔 𝑝$ = log − log 𝑝$ = 𝑋$(𝛽



R data example for binary / binomial GLM (part I)

• Check Example3_1 R notebook


